
An algebraic scheme associated with the non-commutative KP hierarchy and some of its

extensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 5453

(http://iopscience.iop.org/0305-4470/38/24/005)

Download details:

IP Address: 171.66.16.92

The article was downloaded on 03/06/2010 at 03:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 5453–5505 doi:10.1088/0305-4470/38/24/005

An algebraic scheme associated with the
non-commutative KP hierarchy and some of its
extensions

Aristophanes Dimakis1 and Folkert Müller-Hoissen2

1 Department of Financial and Management Engineering, University of the Aegean,
31 Fostini Str., GR-82100 Chios, Greece
2 Max-Planck-Institute for Dynamics and Self-Organization, Bunsenstrasse 10,
D-37073 Göttingen, Germany

E-mail: dimakis@aegean.gr and fmuelle@gwdg.de

Received 2 January 2005, in final form 4 May 2005
Published 1 June 2005
Online at stacks.iop.org/JPhysA/38/5453

Abstract
A well-known ansatz (‘trace method’) for soliton solutions turns the equations
of the (non-commutative) KP hierarchy, and those of certain extensions, into
families of algebraic sum identities. We develop an algebraic formalism, in
particular involving a (mixable) shuffle product, to explore their structure. More
precisely, we show that the equations of the non-commutative KP hierarchy
and its extension (xncKP) in the case of a Moyal-deformed product, as derived
in previous work, correspond to identities in this algebra. Furthermore, the
Moyal product is replaced by a more general associative product. This leads
to a new even more general extension of the non-commutative KP hierarchy.
Relations with Rota–Baxter algebras are established.

PACS numbers: 02.10.Hh, 02.30.Ik, 05.45.−a, 11.10.Nx

1. Introduction

Let K be a field of characteristic zero and (R0, ∗) the K-algebra of differential polynomials
in (matrices of) functions {un+1|n ∈ N} of variables tn, n ∈ N, with an associative (and
non-commutative) product ∗ for which the operators of partial differentiation with respect to
tn, n ∈ N are derivations3. A formal pseudo-differential operator (�DO) in the following
means a formal series in the operator4 ∂ of partial differentiation with respect to x := t1 and

3 Here and in the following N denotes the natural numbers not including zero.
4 An expression like ∂X has to be understood as a product of operators, whereas ∂xX will be used for the partial
derivative of X with respect to x, also denoted as Xx .
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its formal inverse ∂−1 with coefficients in (R0, ∗). With elements f ∈ R0, ∂
−1 satisfies the

relation

∂−1f = f ∂−1 − fx∂
−2 + fxx∂

−3 − · · · . (1.1)

We will use ( )�0 and ( )<0, respectively, to denote the projection to that part of a �DO which
only contains non-negative, respectively negative, powers of ∂ . Let R be the ring of �DOs
generated by

L = ∂ +
∑
n�1

un+1∂
−n (1.2)

using the product ∗, the projections and the defining relation for ∂−1 as the inverse of ∂ = L�0.
This is also a K-algebra. In the Sato framework, the non-commutative KP hierarchy (ncKP)
is defined by5

Ltn := ∂tnL = [(Ln)�0, L] = −[(Ln)<0, L] n = 1, 2, . . . (1.3)

(see [1–7], for example). Introducing a potential φ via

u2 = φx (1.4)

one finds the following expressions for the commuting flows of the ncKP hierarchy6:

φtn = res(Ln) n = 1, 2, . . . . (1.5)

Let us now recall a method7 [8] to obtain soliton solutions of the (potential) ncKP equation(
4φt3 − φxxx − 6φx ∗ φx

)
x

= 6[φy, φx] + 3φyy (1.6)

where y := t2. This is the first non-trivial member of the ncKP hierarchy. Inserting the formal
series

φ =
∞∑

N=1

εNφ(N) (1.7)

in a parameter ε, transforms it into the system of equations

4φ
(N)
t3x − φ(N)

xxxx − 3φ(N)
yy = 6

N−1∑
k=1

(
(φ(k) ∗ φ(N−k))x +

[
φ(k)

y , φ(N−k)
x

])
(1.8)

which is solved by

φ(k) =
M∑

i1,...,ik=1

φi1 ∗ φi2 ∗ · · · ∗ φik(
qi1 − pi2

)(
qi2 − pi3

) · · · (qik−1 − pik

) k = 1, . . . , N (1.9)

with

φk = ck eξ(t,pk) ∗ e−ξ(t,qk) (1.10)

where M ∈ N, ξ(t, pk) = ∑
r�1 trp

r
k (see also [2, 6, 9]).8 Here ck, pk, qk are constants such

that ck and the denominators in (1.9) are different from zero. Inserting (1.9) with (1.10) in
(1.8) first leads to a sum which runs over all lists (i1, . . . , iN ) where ik ∈ {1, . . . , M}. But it

5 Here Ln stands for the n-fold product L ∗ · · · ∗ L, and [, ] is the commutator in the ring (R, ∗).
6 To be precise, here we need to supply R with the operation of x-integration. The residue of a �DO is the coefficient
of its ∂−1 term.
7 For a different method in the non-commutative setting, see [1], for example.
8 M is the soliton number. For M = 1 we can use the geometric series formula (in the domain of convergence of the
series) to obtain φ = ∑∞

N=1(εφ1/(q1 − p1))
N = (1 − εφ1/(q1 − p1))

−1 − 1 from which one recovers a well-known
expression for the 1-soliton solution of the KP equation.
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actually results in separate sum identities (of the same kind), involving the constants pk, qk . It
is therefore sufficient to consider only the terms corresponding to one definite representative
list, say those proportional to φ1 ∗· · ·∗φN (where some of the φk may be equal)9. For example,
the corresponding contribution of the expression

φ
(N)
tr =

M∑
i1,...,iN=1

N∑
k=1

(
pr

ik
− qr

ik

) φi1 ∗ · · · ∗ φiN(
qi1 − pi2

) · · · (qiN−1 − piN

) (1.11)

is Trφ1 ∗ · · · ∗ φN

/∏N−1
k=1 (qk − pk+1) where

Tr :=
N∑

k=1

(
pr

k − qr
k

)
. (1.12)

The Nth order part (1.8) of the ncKP equation is then mapped to the following algebraic
equation10

4T1T3 − T1
4 − 3T2

2 = 6T1(T1 × T1) − 6(T1 × T2 − T2 × T1) (1.13)

where

Tr × Ts :=
∑

1�i�j<k�N

(
pr

i − qr
i

)
qj

(
ps

k − qs
k

) −
∑

1�i<j�k�N

(
pr

i − qr
i

)
pj

(
ps

k − qs
k

)
. (1.14)

Equation (1.8) is solved by (1.9) if (1.13) is an identity, which indeed turns out to be the case
on closer inspection. Note that this identity not only holds for arbitrary values of the pk, qk ,
but also for arbitrary N ∈ N.11 Inspection of the identity (1.13) suggests a way to obtain such
identities directly from ncKP equations. The basic rules are12

φtm1 ...tmk
�→ Tm1 · · · Tmk

φtr ∗ φts �→ Tr × Ts. (1.15)

Now (1.13) immediately follows from (1.6).
Taking (1.7) with (1.9) as an ansatz to obtain solutions of a partial differential equation

involving the product ∗ and partial derivatives of a field φ with respect to the variables tn turns
it into an algebraic equation. If this is an identity for all N, the respective equation has KP-type
soliton solutions13. Does the ncKP hierarchy exhaust the possibilities of such equations?

In particular, we will be interested in the case where the product ∗ depends on parameters.
An example is given by the (Groenewold–) Moyal product [10–13]

f ∗ g := m ◦ eP/2(f ⊗ g) P :=
∞∑

m,n=1

θmn∂tm ⊗ ∂tn (1.16)

9 For N > M some of the φk necessarily have to be equal, but for N � M there are lists for which all factors φk are
potentially independent. We should consider such lists as ‘representative’. We thus assume that the soliton number
M can be chosen arbitrarily large. The number M then does not enter the subsequent considerations any more.
10 We should stress again that each summand in (1.9) leads separately to this identity. The non-commutative terms
on the right-hand side of (1.13) still remain present if we let the product ∗ become commutative, i.e., in the case of
the ‘commutative’ KP hierarchy. In that case, they disappear, however, via the summation in (1.9).
11 Such identities typically decompose into several identities since terms such as

∑
1�i�j<k�N pipjpk and∑

1�j<k�N pjp
2
k , for example, are obviously linearly independent. Accordingly, one can introduce a notion of

length, so that expressions decompose into linearly independent parts of fixed length. In the step towards the algebra
developed in section 2 we abstracted the above sums to products P ≺ P ≺ P , respectively P ≺ P • P , from which
they are recovered via a representation �N (see section 3). The grading given by ≺ takes care of the length.
12 In the usual formulation of the ncKP hierarchy, φ without derivatives acting on it does not appear, so we need not
say to what a bare φ should correspond.
13 Of course, one may think of modifications of (1.9) in the search for other equations admitting a soliton structure.
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where m(f ⊗ g) = fg for functions f, g, and θnm = −θmn are parameters. Then there is
another basic rule, namely

∂θrs
�→ �rs := 1

2

∑
1�j<k�N

[(
pr

j − qr
j

)(
ps

k − qs
k

) − (
ps

j − qs
j

)(
pr

k − qr
k

)]

− 1

2

N∑
k=1

(
pr

kq
s
k − ps

kq
r
k

)
. (1.17)

According to our correspondence rules, we have, for example,

φθrs tk ∗ φtl ∗ φtm �→ (Tk�rs) × Tl × Tm (1.18)

with a (rather obvious) generalization of (1.14) which defines an associative product (of sums
of powers of p1, . . . , pN, q1, . . . , qN ). The first equation of the extension (in the sense of
[5–7]) of the ncKP hierarchy (with Moyal ∗-product), called the xncKP hierarchy, is

φθ1,2 = 1
6

(
φt3 − φxxx

) − φx ∗ φx. (1.19)

This is mapped to

�1,2 = 1
6

(
T3 − T1

3
) − T1 × T1 (1.20)

which indeed also turns out to be an identity.
Hence, taking (1.7) with (1.9) as an ansatz to obtain solutions of a (in this case non-local)

partial differential equation involving the Moyal product and partial derivatives of a field φ

with respect to the variables tr and θmn converts it into an algebraic equation. If this is an
identity for all N, the respective equation has KP-type soliton solutions. The equations of the
xncKP hierarchy provide us with corresponding examples.

The mapping of (x)ncKP equations to algebraic identities described above can actually
be reversed. From (1.13), respectively (1.20), we easily reconstruct the partial differential
equations (1.6), respectively (1.19). It should be clear that, in order to do this, the sum calculus
is not essential, but rather a certain algebraic abstraction. This motivates us to develop an
algebraic scheme which allows us to prove and to find identities of the kind we met above.
The way in which we expressed the identities (1.13) and (1.20) already suggests some main
ingredients of such a scheme. A deeper analysis led us to the algebra which we introduce
in section 2. A correspondence between identities holding in the abstract algebra and the
equations of the ncKP hierarchy and certain extensions is indeed established in this work. In
this context one should keep in mind that characteristic properties of the KP hierarchy are
indeed purely algebraic. In particular, this concerns the basic property of commutativity of
the flows. Writing (1.3) in the form

∂tnL = δnL δnL := [(Ln)�0, L] (1.21)

and extending δn to R according to the derivation rule (together with δmX�0 := (δmX)�0 for
X ∈ R), the commutativity of the flows becomes equivalent to

[δm, δn]L = 0 (1.22)

which is a purely algebraic identity in the ring R (and in particular makes no reference to
the variables tn, n > 1). Associated with the extension of the Moyal-deformed KP hierarchy
are ‘generalized derivations’ which also commute as a consequence of algebraic identities.
We will meet even more generalized derivations in section 6. They also define extensions of
the KP hierarchy with a deformed product (see section 8).

The treatment of the xncKP hierarchy in [5–7] heavily relies on the fact that the underlying
algebra R of �DOs admits the decomposition R = R�0 ⊕R<0 into subalgebras, whereas in
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the treatment of the ncKP hierarchy it is sufficient to have a corresponding decomposition of
Lie algebras (as common in integrable systems theory)14. Such an algebra decomposition is
equivalent to the existence of an idempotent Rota–Baxter operator R [14–17] on the algebra (see
also appendix A). A few years ago, it was shown that the choice of a renormalization scheme
in perturbative quantum field theory corresponds to the choice of a Rota–Baxter operator
[18–21]. In [22, 23] it has been pointed out that this setting resembles the loop algebra
framework of integrable systems. The antisymmetric part of the bilinear Rota–Baxter relation
(of weight 1) is the famous classical Yang–Baxter relation, which plays an important role in
integrable system theory [24–26]. It should not come as a surprise that various Rota–Baxter
relations also appear in the present work.

Section 2 introduces the algebra A which plays a basic role in this work. Section 3
then provides a realization in terms of partial sum calculus. Some other realizations of the
algebra A are briefly described in appendix B. Section 4 treats the case of the subalgebra A(P )

of A generated by a single element P. This plays a central role in the subsequent sections.
Section 5 addresses the case of a subalgebra of A generated by two commuting elements and
an embedding of A(P ). Although this section is important in order to make contact with
the aforementioned algebraic sum identities, it may be skipped on first reading. Sections 6
and 7 relate the algebraic framework with the ncKP hierarchy and (in the case where ∗ is
the Moyal product) its xncKP extension. A more general extension, corresponding to a more
general ∗-product (see appendix C), is studied in section 8. Appendix D sketches a certain
generalization of the algebraic framework which, in particular, allows us to introduce an
algebraic counterpart of a Baker–Akhiezer function (formal eigenfunction of a Lax operator
like L). Section 9 contains some conclusions and further remarks.

2. The basic algebraic structure

Let A = ⊕
r�1 Ar be a graded linear space over a field K of characteristic zero, which

becomes an associative algebra with respect to two products ≺ and •, which are bilinear maps
Ar × As → Ar+s and Ar × As → Ar+s−1, respectively15. Furthermore, we require that the
two products satisfy the mutual associativity conditions

(α ≺ β) • γ = α ≺ (β • γ ) (α • β) ≺ γ = α • (β ≺ γ ) (2.1)

for all α, β, γ ∈ A. It is convenient to introduce the notation

α 
 β := α ≺ β + α • β (2.2)

for the combined product which is clearly also associative. This new product induces a
different grading of the algebra: A = ⊕

r�1 Ar , where A1 = A1 and Ar 
 As ⊆ Ar+s . We
also have Ar • As ⊆ Ar+s−1 and Ar ≺ As ⊆ Ar+s−1

⊕
Ar+s .

Let Shuff(m, n) denote the set of (m, n)-shuffles, i.e.

Shuff(m, n) := {σ ∈ Sm+n|σ−1(1) < · · · < σ−1(m), σ−1(m + 1) < · · · < σ−1(m + n)}
(2.3)

where Sn is the symmetric group acting on n letters. For example,

Shuff(1, n) = {{1, 2, . . . , n + 1}, {2, 1, 3, . . . , n + 1}, . . . , {2, 3, . . . , n + 1, 1}}
Shuff(2, 2) = {{1, 2, 3, 4}, {1, 3, 2, 4}, {1, 3, 4, 2}, {3, 1, 2, 4}, {3, 1, 4, 2}, {3, 4, 1, 2}}
14 Also R = R�1 ⊕R<1 is a decomposition of the algebra of �DOs into subalgebras. This underlies the (extended)
modified KP hierarchy (see [2, 7], for example).
15 The grading basically accounts for the notion of ‘length’ mentioned in a previous footnote.
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where a permutation σ is described by the ordered set {σ(1), . . . , σ (m + n)}. Taking a deck
of m cards and another one of n cards, Shuff(m, n) describes all possible shuffles of the two
decks. It has (m + n)!/(m!n!) elements. Clearly, Shuff(m, n) = Shuff(n,m).

We define the main product ◦ in A by

(A1 �1 . . . �m−1 Am) ◦ (Am+1 �m+1 . . . �m+n−1 Am+n)

:=
∑

σ∈ Shuff(m,n)

Aσ(1) �′
σ(1) . . . �′

σ(m+n−1) Aσ(m+n) (2.4)

for A1, . . . , Am+n ∈ A1. Each �i , 1 � i � m + n − 1, stands for one of the choices ≺ or 
,
and

�′
σ(i) :=





 if σ(i) � m < σ(i + 1)

≺ if σ(i + 1) � m < σ(i)

�i otherwise.
(2.5)

This defines another associative product in A. It is a mixable shuffle product [27, 28] with
respect to the product pair (≺, •), respectively (
, •). In particular, we find

(A1 �1 A2) ◦ (A3 �3 A4) =
∑

σ∈ Shuff(2,2)

Aσ(1) �′
σ(1) . . . �′

σ(3) Aσ(4)

= A1 �1 A2 
 A3 �3 A4 + A1 
 A3 ≺ A2 
 A4 + A1 
 A3 �3 A4 ≺ A2

+ A3 ≺ A1 �1 A2 
 A4 + A3 ≺ A1 
 A4 ≺ A2 + A3 �3 A4 ≺ A1 �1 A2.

(2.6)

Furthermore,

A1 ◦ A2 =
∑

σ∈ Shuff(1,1)

Aσ(1) �′
σ(1) Aσ(2) = A1 
 A2 + A2 ≺ A1 (2.7)

and, more generally,

A1 ◦ (A2 �2 A3 �3 . . . �n An+1) =
∑

σ∈Shuff(1,n)

Aσ(1) �′
σ(1) . . . �′

σ(n) Aσ(n+1)

= A1 
 A2 �2 . . . �n An+1 + A2 ≺ A1 
 A3 �3 . . . �n An+1

+ A2 �2 A3 ≺ A1 
 A4 �4 . . . �n An+1 + · · ·
+ A2 �2 A3 �3 . . . �n An+1 ≺ A1 (2.8)

where we can substitute either ≺ or 
 for �2, . . . ,�n. Let β = B1 �1 B2 �2 . . .�n−1 Bn with
Bi ∈ A1 and β[r,s] := Br �r . . . �s−1 Bs for r � s. The last formula can then be written more
concisely as

A ◦ β = A 
 β +
n−1∑
r=1

β[1,r] ≺ A 
 β[r+1,n] + β ≺ A. (2.9)

It is convenient to introduce the ‘Sweedler notation’ [29]

A ◦ β = A 
 β +
∑

β(1) ≺ A 
 β(2) + β ≺ A. (2.10)

In a similar way, we obtain

β ◦ A = β 
 A +
∑

β(1) 
 A ≺ β(2) + A ≺ β. (2.11)

Remark. If (A1, •) is unital with a unit element E, this extends to A such that E • α =
α = α • E. Note that no rules are specified to resolve expressions such as E ≺ α or α ≺ E.
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2.1. Some properties of the algebra A

Lemma 2.1. Let A ∈ A1 and α, β ∈ A. Then

A ◦ (α � β) = (A ◦ α) � β + α � (A ◦ β) − α � A � β (2.12)

(α � β) ◦ A = (α ◦ A) � β + α � (β ◦ A) − α � A � β (2.13)
[A, α � β]◦ = [A, α]◦ � β + α � [A, β]◦ (2.14)

where [ , ]◦ denotes the commutator with respect to the product ◦.

Proof. Because of linearity, it is sufficient to consider the case where α ∈ Am and β ∈ An

for m, n ∈ N. Using (2.10), we find

A ◦ (α � β) = A 
 (α � β) +
∑

(α � β)(1) ≺ A 
 (α � β)(2) + (α � β) ≺ A

= (A 
 α) � β +
∑

α(1) ≺ A 
 α(2) � β + α ≺ A 
 β

+ α �
∑

β(1) ≺ A 
 β(2) + α � β ≺ A

= (A ◦ α) � β + α � (A ◦ β) + α ≺ A 
 β − α ≺ A � β − α � A 
 β.

For both choices ≺ and 
 for � this yields the first identity of the lemma. The second is
obtained in the same way using (2.11). The third identity is an immediate consequence of the
first two. �

In the following we will adopt the convention that the product ◦, which does not satisfy
mutual associativity relations with the other products, takes precedence over the other products.
This means that it has to be evaluated first in expressions also containing other products. For
example,

α ◦ α′ � β ◦ β ′ := (α ◦ α′) � (β ◦ β ′). (2.15)

Lemma 2.2.

(α ≺ A) ◦ β = α ≺ A 
 β +
∑

α ◦ β(1) ≺ A 
 β(2) + α ◦ β ≺ A (2.16)

(A 
 α) ◦ β = A 
 α ◦ β +
∑

β(1) ≺ A 
 α ◦ β(2) + β ≺ A 
 α (2.17)

β ◦ (A ≺ α) = β 
 A ≺ α +
∑

β(1) 
 A ≺ β(2) ◦ α + A ≺ β ◦ α (2.18)

β ◦ (α 
 A) = β ◦ α 
 A +
∑

β(1) ◦ α 
 A ≺ β(2) + α 
 A ≺ β. (2.19)

Proof. According to the definition of the shuffle product ◦, which preserves the order of
the components of each factor (and the product symbols between them), an expression like
(α ≺ A) ◦ β means that we first have to shuffle A into β and afterwards shuffle α into the
resulting expression, but now with the restriction that all components of α have to precede A.
For example, in order to evaluate (A1 ≺ A2) ◦ β, we first compute

A2 ◦ β = A2 
 β +
∑

β(1) ≺ A2 
 β(2) + β ≺ A2.

Then we shuffle A1 into this expression as follows:

(A1 ≺ A2) ◦ β = A1 ≺ A2 
 β +
∑

(A1 ◦ β(1)) ≺ A2 
 β(2) + (A1 ◦ β) ≺ A2.
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This obviously generalizes to

(α ≺ A) ◦ β = α ≺ A 
 β +
∑

(α ◦ β(1)) ≺ A 
 β(2) + (α ◦ β) ≺ A

which is the first identity of this lemma. The others are obtained by similar considerations.
�

The following identity characterizes the main product as a ‘quasi-shuffle product’ [30].

Proposition 2.1.

(A ≺ α) ◦ (B ≺ β) = A ≺ α ◦ (B ≺ β) + B ≺ (A ≺ α) ◦ β + (A • B) ≺ α ◦ β. (2.20)

Proof. Using (2.18) and (2.2), we obtain

(A ≺ α) ◦ (B ≺ β) = (A ≺ α) 
 B ≺ β + (A ≺ B + A • B) ≺ (α ◦ β)

+ A ≺
∑

α(1) 
 B ≺ (α(2) ◦ β) + B ≺ (A ≺ α) ◦ β.

Formula (2.20) is now obtained by rewriting the first term on the right-hand side as follows,
again with the help of (2.18),

A ≺ α 
 B ≺ β = A ≺
(
α ◦ (B ≺ β) −

∑
α(1) 
 B ≺ α(2) ◦ β − B ≺ α ◦ β

)
. �

In a similar way, one can prove the following identity:

(A 
 α) ◦ (B ≺ β) = A 
 α ◦ (B ≺ β) + B ≺ (A 
 α) ◦ β. (2.21)

Remark. With A ∈ A1 let us associate a map RA : A → A via RA(α) = A ≺ α. Then
(2.20) reads

RA(α) ◦ RB(β) = RA(α ◦ RB(β)) + RB(RA(α) ◦ β) + RA•B(α ◦ β). (2.22)

In particular, if A ∈ A1 satisfies A • A = −qA with q ∈ K, then RA defines a Rota–Baxter
operator of weight q on (A, ◦) [14–17] (see also appendix A and [27, 31–33] for relations with
shuffle algebras). Associated with a unit element E is thus a Rota–Baxter operator of weight
−1. If q = 0 and α = ∑

n�1 anA
≺n, β = ∑

n�1 bnA
≺n, we obtain α ◦ β = ∑

n�1 cnP
≺n

with cn = ∑n
k=0

(
n

k

)
akbn−k , from which we recover the ring of Hurwitz series (divided power

series) [34].

Theorem 2.1. If [A,B]• := A • B − B • A vanishes for all A,B ∈ A1, then (A, ◦) is a
commutative algebra.

Proof. First we note that [A,B]◦ = [A,B]•. (2.10) and (2.11) lead to

[A, β]◦ = [A, β]• +
∑

(β(1) ≺ A • β(2) − β(1) • A ≺ β(2))

=
n∑

r=1

B1 �1 . . . �r−1 [A,Br ]• �r . . . �n−1 Bn

for β = B1 �1 . . . �n−1 Bn. This vanishes indeed as a consequence of our assumption.
Furthermore, from (2.20) we obtain

[A ≺ α,B ≺ β]◦ = A ≺ [α,B ≺ β]◦ + B ≺ [A ≺ α, β]◦
+ (A • B) ≺ α ◦ β − (B • A) ≺ β ◦ α.

Using our assumption, the last two terms combine to (A • B) ≺ [α, β]◦. Hence this formula
can be used to prove our general statement by induction on the grades of α and β. �
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2.2. Involutions interchanging ≺ and 

There is a fundamental duality in the algebra A concerning the two operations ≺ and 
. It
is convenient to encode this duality in two involutions which exchange the two products and
their gradings:

(α ≺ β)ψ = αψ 
 βψ (α ≺ β)ω = βω 
 αω (2.23)

where for all A ∈ A1 also Aψ,Aω ∈ A1. Using the involution property γ ψψ = γ , respectively
γ ωω = γ , for all γ ∈ A, this implies

(α • β)ψ = −αψ • βψ (α • β)ω = −βω • αω. (2.24)

As a consequence,

(α 
 β)ψ = αψ ≺ βψ (α 
 β)ω = βω ≺ αω. (2.25)

We still have the freedom to define the action of the two involutions on the generators of A.

Proposition 2.2.

(α ◦ β)ψ = βψ ◦ αψ (α ◦ β)ω = αω ◦ βω. (2.26)

Proof. By induction with respect to the grade of α. For α ∈ A1 the identities easily follow
from (2.10) and (2.11). If the identities hold for α ∈ An, they also hold for α ∈ An+1 by use
of the identities (2.16) and (2.19). �

Applying the above involutions to identities in A generates further identities. This often
provides us with a quick way of proving required relations.

Proposition 2.3.

(A 
 α) ◦ (B 
 β) = A 
 α ◦ (B 
 β) + B 
 (A 
 α) ◦ β − (B • A) 
 α ◦ β (2.27)

(α ≺ A) ◦ (β ≺ B) = α ◦ (β ≺ B) ≺ A + (α ≺ A) ◦ β ≺ B + α ◦ β ≺ (A • B) (2.28)

(α 
 A) ◦ (β 
 B) = α ◦ (β 
 B) 
 A + (α 
 A) ◦ β 
 B − α ◦ β 
 (B • A). (2.29)

Proof. (2.27) and (2.29) are obtained by applying ψ , respectively ω, to (2.20). (2.28) in turn
results from (2.27) by application of ω (or from (2.29) via ψ ). �

2.3. Associative products determined by elements of A1

With each A ∈ A1 we associate two bilinear maps Â, Ǎ : A × A → A via

Â(α, β) := αÂβ := α ≺ A 
 β (2.30)

Ǎ(α, β) := αǍβ := α 
 A ≺ β. (2.31)

The ‘product notation’ is justified since the expressions on the right-hand sides are combined
associative with all products defined so far, with the exception of the main product, and thus
also among themselves. In particular, (αǍβ)B̂γ = αǍ(βB̂γ ) so that we are allowed to drop
the brackets.

Lemma 2.3.

(αÂβ)ψ = αψ Ǎψβψ (αÂβ)ω = βωÂωαω. (2.32)
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Proof. These are immediate consequences of definitions (2.30) and (2.31), and the properties
of the involutions ψ and ω (see section 2.2). With B := Aψ, Ǎψ means B̌. �

Proposition 2.4. The following derivation properties of ◦-multiplication by an element
B ∈ A1 hold:

B ◦ (αǍβ) = (B ◦ α)Ǎβ + αǍ(B ◦ β) (2.33)
(αÂβ) ◦ B = αÂ(β ◦ B) + (α ◦ B)Âβ. (2.34)

Proof. This is easily verified with the help of (2.12) and (2.13). Also note that the two
identities are mapped to each other by application of the involution ψ (with Aψ = A for all
A ∈ A1) and use of lemma 2.3. �

The next result is a generalization of the previous proposition.

Proposition 2.5.

γ ◦ (αǍβ) = (γ ◦ α)Ǎβ +
∑

(γ(1) ◦ α)Ǎ(γ(2) ◦ β) + αǍ(γ ◦ β) (2.35)

(αÂβ) ◦ γ = αÂ(β ◦ γ ) +
∑

(α ◦ γ(1))Â(β ◦ γ(2)) + (α ◦ γ )Âβ. (2.36)

Proof. According to the definition of the shuffle product, γ ◦ (α 
 A ≺ β) consists of a sum
of terms, two of which correspond to shuffling of γ into α, respectively β. In addition, we
have all possible terms obtained by splitting γ into two ordered parts and shuffling the first
into α and the second into β. The result is precisely our first formula. The second formula is
obtained in the same way16. �

3. Realization by partial sum calculus

Let N := {I ⊂ N|I �= ∅, |I | < ∞}. This is the set of non-empty finite subsets of the set of
natural numbers. Let A be the freely generated linear space (over K) with basis {eI |I ∈ N }.
For I, J ∈ N we define the following associative products:

eI ≺ eJ :=
{
eI∪J if max(I ) < min(J )

0 otherwise
(3.1)

eI • eJ :=
{
eI∪J if max(I ) = min(J )

0 otherwise
(3.2)

and thus

eI 
 eJ =
{
eI∪J if max(I ) � min(J )

0 otherwise.
(3.3)

For example, e{2,4,5} = e2 ≺ e4 ≺ e5 ∈ A3, where we simply write en instead of e{n}. Any
element A of A1 can be written as A = ∑

n�1 anen with an ∈ K. The •-product with another
element B = ∑

n�1 bnen of A1 is then given by

A • B =
∑
n�1

anbnen. (3.4)

16 The formulae of this proposition do not hold with Â and Ǎ exchanged, if ◦ is not commutative. For example,
B ◦ (αÂβ) = (B ◦α) ≺ A 
 β + α ≺ B ◦ (A 
 β)−α ≺ B ≺ A 
 β where the last term corrects a double counting
of the first two. By use of (2.12), we find B ◦ (αÂβ) = (B ◦ α) ≺ A 
 β + α ≺ A 
 (B ◦ β) + α ≺ [B, A]◦ 
 β.
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There is a formal17 unit element, E := ∑
n�1 en. With Ai = ∑

n�1 ai,nen, i = 1, . . . , r , we
obtain

A1 ≺ · · · ≺ Ar =
∑

1�n1<···<nr

a1,n1 · · · ar,nr
e{n1,...,nr }. (3.5)

For the main product, we find the simple formula

eI ◦ eJ = eI∪J . (3.6)

The linear map �N : A → K defined by

�N(eI ) =
{

1 if I ⊂ {1, 2, . . . , N}
0 otherwise

(3.7)

has the properties

�N(A1 ≺ · · · ≺ Ar) =
∑

1�n1<···<nr�N

a1,n1 · · · ar,nr
(3.8)

�N(A1 ◦ · · · ◦ Ar) =
(

N∑
n1=1

a1,n1

)
· · ·

(
N∑

nr=1

a1,nr

)
. (3.9)

By application of �N to identities in (the partial sum realization of) the algebra A, we obtain
sum identities of the kind considered in the introduction, which hold for all N. But which
identities in A correspond to the equations of the (x)ncKP hierarchy? The answer will be
given in section 7.

Remark. The calculus of partial sums is known to carry the structure of a Rota–Baxter
algebra [14, 15] (see also appendix A). We define a map R from A to a completion (as a
projective limit) Ā1 of A1 by

R(α) =
∑
N�1

�N−1(α)eN ∀α ∈ A (3.10)

where �0(α) := 0. It satisfies

R(α ≺ A) = R(R(α) • A) (3.11)

and therefore

R(A1 ≺ · · · ≺ Ar) = R(R(. . . R(R(A1) • A2) • . . .) • Ar) (3.12)

for A1, . . . , Ar ∈ A1. Another simple consequence of (3.11) is

R(α 
 A) = R(R(α) • A + α • A). (3.13)

Furthermore, for all α, β ∈ A the following identity holds:

R(α ◦ β) = R(α) • R(β) ∀α, β ∈ A. (3.14)

Applying R to A ◦ B = A 
 B + B ≺ A thus leads to

R(A) • R(B) = R(R(A) • B + A • R(B) + A • B) ∀A,B ∈ A1. (3.15)

With obvious extensions of • and R, (Ā1, •, R|Ā1) becomes a Rota–Baxter algebra of
weight −1.

17 Proper elements of A are finite sums.
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4. The subalgebra of A generated by a single element P

Let A(P ) be the subalgebra of A generated by an element P ∈ A1. More precisely, if
(A(P ), •) has a unit element E, then A1(P ) is spanned by

Pn := P •n n = 0, 1, 2, . . . (4.1)

where P0 := E. If (A(P ), •) is not unital, we have to disregard expressions containing P0 in
the following. Clearly, (A1(P ), •) is commutative, and thus also (A(P ), ◦) by theorem 2.1.
According to section 2.3, P determines an associative product,

α ×̂β := −αP̂β = −α ≺ P 
 β ∀α, β ∈ A(P ) (4.2)

which will play an important role in our subsequent considerations.

Proposition 4.1. Via the main product, each A ∈ A1(P ) acts on a ×̂-product according to
the derivation rule

A ◦ (α ×̂ β) = (A ◦ α) ×̂ β + α ×̂ (A ◦ β). (4.3)

Proof. By use of (2.34), taking the commutativity of (A(P ), ◦) into account. �

It is convenient to introduce the following objects which form a basis of A(P ),

Pm1...mk
:= Pm1 ≺ · · · ≺ Pmk

. (4.4)

Theorem 4.1.

Pm1...mk
◦ (α ×̂ β) =

k∑
j=0

(
Pm1...mj

◦ α
) ×̂ (

Pmj+1...mk
◦ β

)
. (4.5)

Proof. Since ◦ is commutative in the case under consideration, (2.36) implies

(A1 ≺ A2 ≺ · · · ≺ Ak) ◦ (α ×̂β) = (A1 ≺ · · · ≺ Ak) ◦ α ×̂β

+
k−1∑
l=1

(A1 ≺ · · · ≺Al) ◦ α ×̂ (Al+1 ≺ · · · ≺ Ak) ◦ β + α ×̂ (A1 ≺ · · · ≺ Ak) ◦ β

for arbitrary Al ∈ A1. Setting Al = Pml
completes the proof. �

Remark. It looks natural to consider still another product: α ×̌β := αP̌β := α 
 P ≺ β.
Choosing the involution ψ in such a way that P ψ = P , lemma (2.3) implies (α ×̌β)ψ =
−αψ ×̂ βψ . The product ×̌ is thus equivalent to the product ×̂ and it is sufficient to deal with
the latter, as long as we restrict our considerations to the algebra A(P ).

4.1. Special relations in A(P ) and reminiscences of (x)ncKP

The aim of this section is to derive algebraic identities in A(P ) which mirror algebraic
properties of the (x)ncKP hierarchy, as derived in [6]. The results will be important in
later sections, where the relation between identities in A(P ) and the ncKP hierarchy (and
extensions) is put on firmer grounds.

Lemma 4.1.

P ◦n = P 
 P ◦n−1 −
n−2∑
r=1

(
n − 1

r

)
P ◦n−r−1 ×̂ P ◦r +P ◦n−1 ≺ P n = 2, 3, . . . (4.6)
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P ◦n−2 ◦ (P ≺ P) = P ◦n−1 ≺ P −
n−2∑
r=1

(
n − 2

r

)
P ◦n−r−1 ×̂ P ◦r n = 3, 4, . . . . (4.7)

Proof. For n = 2, the first relation obviously holds. Let us assume that the formula holds for
some integer n � 2. Then

P ◦n+1 = P ◦n ◦ P =
(

P 
 P ◦n−1 −
n−2∑
r=1

(
n − 1

r

)
P ◦n−r−1 ×̂P ◦r + P ◦n−1 ≺ P

)
◦ P.

Next we use (2.13), P ◦2 = P 
 P + P ≺ P , and (4.3) to obtain

P ◦n+1 = P 
 P ◦n + P ◦n ≺ P − P ×̂P ◦n−1 − P ◦n−1 ×̂P

−
n−2∑
r=1

(
n − 1

r

)
(P ◦n−r−1 ×̂P ◦r+1 + P ◦n−r ×̂P ◦r ).

With the help of the combinatorial identity(
n

r

)
=

(
n − 1

r

)
+

(
n − 1

r − 1

)
(4.8)

and some simple manipulations, this becomes

P ◦n+1 = P 
 P ◦n + P ◦n ≺ P −
n−1∑
r=1

(
n

r

)
P ◦n−r ×̂P ◦r

so that the first formula of the lemma also holds for n + 1. The proof of the second formula
can be carried out in a very similar way. �

Let us introduce U2 := P and

Un := (−1)nP ≺ P ◦n−2 n = 3, 4, . . . (4.9)

Proposition 4.2.

P ◦ Un+1 = 1

2
(P2 − P ◦2) ◦ Un − [U2, Un]×̂ +

n−2∑
r=1

(
n − 2

r

)
(−1)rUn−r ×̂P ◦r ◦ U2 (4.10)

where [α, β]×̂ := α ×̂ β − β ×̂ α.

Proof. First we note that, by use of (2.12), definition (4.9) implies P ◦Un = −Un+1 +P 
 Un

and, by multiple use of this equation,

P ◦2 ◦ Un = P ◦ (P ◦ Un) = −Un+2 − 2P ◦ Un+1 − 2P ×̂ Un + P2 
 Un.

Furthermore, with the help of (2.12), P2 = P ◦2 − 2P ≺ P , and (4.7), we obtain

P2 ◦ Un = (−1)nP2 ◦ (P ≺ P ◦n−2) = P2 
 Un + (−1)nP ≺ (P2 ◦ P ◦n−2)

= P2 
 Un + Un+2 − 2(−1)nP ≺ ((P ≺ P) ◦ P ◦n−2)

= P2 
 Un + Un+2 + 2Un+1 ≺ P + 2(−1)nP ≺
n−2∑
r=1

(
n − 2

r

)
P ◦n−r−1 ×̂ P ◦r

= P2 
 Un + Un+2 + 2Un+1 ≺ P − 2
n−2∑
r=1

(
n − 2

r

)
(−1)rUn−r+1 ×̂ P ◦r .
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Now we can eliminate the products ≺ and 
 from this expression with the help of our first
result and

Un+1 ≺ P = −Un+2 +
n−1∑
r=1

(
n − 1

r

)
(−1)rUn−r+1 ×̂P ◦r

which is obtained by applying P ≺ to (4.6). After simple manipulations and use of (4.8), this
results in the desired formula. �

Next we introduce H
(m1,...,mr )
1 := Pmr


 · · · 
 Pm1 and

H
(m1,...,mr )
n+1 := Hn 
 Pmr


 · · · 
 Pm1 n ∈ N (4.11)

where

Hn := H(1)
n := P 
n n ∈ N. (4.12)

Proposition 4.3.

Pn ◦ H
(m)
k − Pm ◦ H

(n)
k −

k−1∑
j=1

[
H

(m)
j ,H

(n)
k−j

]
×̂ = 0. (4.13)

Proof. Using (2.11) and (4.11), we obtain

Hk−1 ◦ Pm = Hk−1 
 Pm +
k−2∑
j=1

Hj 
 Pm ≺ Hk−j−1 + Pm ≺ Hk−1

= H
(m)
k +

k−3∑
j=1

H
(m)
j+1 ≺ P 
 Hk−j−2 + H

(m)
k−1 ≺ P + Pm ≺ P 
 Hk−2

= H
(m)
k −

k−2∑
j=1

H
(m)
j ×̂Hk−j−1 + H

(m)
k−1 ≺ P

and thus

Hk−1 ◦ Pm 
 Pn = H
(m)
k 
 Pn −

k−1∑
j=1

H
(m)
j ×̂ H

(n)
k−j .

This is used to derive

Pm ◦ H
(n)
k = Pm ◦ (P 
k−1 
 Pn)

= (Pm ◦ P 
k−1) 
 Pn + P 
k−1 
 (Pm ◦ Pn) − H
(m)
k 
 Pn

= Hk−1 
 (Pm ◦ Pn) −
k−1∑
j=1

H
(m)
j ×̂H

(n)
k−j

from which (4.13) follows by anti-symmetrization with respect to m, n. �

Proposition 4.4.

H(m+1)
n = −Pm ◦ H(1)

n + H
(m)
n+1 + H(1)

m+n −
n−1∑
r=1

H
(m)
n−r ×̂H(1)

r +
m−1∑
r=1

H(m−r)
n ×̂H(1)

r . (4.14)
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Proof. First we obtain

Pm 
 P = Hm+1 −
m−1∑
r=1

Pm−r ≺ Hr+1

by induction on m. This shows that

Pm 
 Hn = Hm+n +
m−1∑
r=1

Pm−r ×̂Hn+r−1

holds for n = 1, and the general formula is easily verified by induction on n. According
to (2.10),

Pm ◦ Hn = Pm 
 Hn +
n−1∑
r=1

Hr ≺ Pm 
 Hn−r + Hn ≺ Pm.

Using Hn ≺ Pm = H
(m)
n+1 − H(m+1)

n , which is easily verified, this becomes

H(m+1)
n − H

(m)
n+1 + Pm ◦ Hn = Pm 
 Hn +

n−1∑
r=1

Hr ≺ Pm 
 Hn−r .

Now we eliminate all expressions Pm 
 Hl by means of the corresponding formula above to
get

H(m+1)
n − H

(m)
n+1 + Pm ◦ Hn = Hm+n +

m−1∑
r=1

Pm−r ×̂ Hn+r−1

+
n−1∑
r=1

Hr ≺
(

Hm+n−r +
m−1∑
k=1

Pm−k ×̂ Hn−r+k−1

)
.

Next we use Hr ≺ Pm−k = H
(m−k)
r+1 − H(m−k+1)

r . Some rearrangements then lead to (4.14).
�

Proposition 4.5.

H(m1,...,mr+1)
n = H(m1,...,mr )

n+mr+1
+

mr+1−1∑
k=1

H(mr+1−k)
n ×̂ H

(m1,...,mr )
k r = 1, 2, . . . . (4.15)

Proof. By induction one easily verifies that

Pn = Hn −
n−1∑
k=1

Pn−k ≺ Hk.

Using this in definition (4.11), we find

H(m1,...,mr+1)
n = Hn−1 


(
Hmr+1 −

mr+1−1∑
k=1

Pmr+1−k ≺ Hk

)

 Pmr


 · · · 
 Pm1

= H
(m1,...,mr )
n+mr+1−1 −

mr+1−1∑
k=1

H(mr+1−k)
n ≺ P 
 H

(m1,...,mr )
k

which is (4.15). �

Let C
(m1,...,mr )
1 := (−1)rPm1...mr

and

C
(m1,...,mr )
n+1 := (−1)n+rPm1...mr

≺ P ≺n n ∈ N. (4.16)
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Proposition 4.6.

C(m+1)
n = Pm ◦ C(1)

n + C
(m)
n+1 + C(1)

m+n +
n−1∑
r=1

C(1)
r ×̂C

(m)
n−r −

m−1∑
r=1

C(1)
r ×̂C(m−r)

n (4.17)

C(m1,...,mr+1)
n = C(m1,...,mr )

n+mr+1
−

mr+1−1∑
k=1

C
(m1,...,mr )
k ×̂C(mr+1−k)

n . (4.18)

Proof. Choose the involution ω such that P ω = −P . Then Pr
ω = −Pr, (α ×̂β)ω =

−βω ×̂ αω, and C(m1,...,mr )
n = (

H(m1,...,mr )
n

)ω
. Now our statements follow by application of ω

to (4.14) and (4.15). �

Let

Amn := 1
2 (Pmn − Pnm) = 1

2 (Pm ≺ Pn − Pn ≺ Pm) = 1
2 (Pm 
 Pn − Pn 
 Pm). (4.19)

Proposition 4.7.

Amn ◦ (α ×̂ β) = Amn ◦ α ×̂β + α ×̂ Amn ◦ β + 1
2 (Pm ◦ α ×̂Pn ◦ β − Pn ◦ α ×̂Pm ◦ β).

(4.20)

Proof. This follows directly from theorem 4.1. �

Proposition 4.8.

Amn = −1

2
(Pm+n + Pm ◦ Pn) + H

(n)
m+1 +

m−1∑
r=1

Pr ×̂H
(n)
m−r

= −1

2
(Pm+n − Pm ◦ Pn) − C

(n)
m+1 −

m−1∑
r=1

C
(n)
m−r ×̂Pr. (4.21)

Proof. Using Pm ◦ Pn = Pm 
 Pn + Pn ≺ Pm and Pm+n = Pm 
 Pn − Pm ≺ Pn we find

Amn = Pm 
 Pn − 1
2 (Pm ◦ Pn + Pm+n).

The first equality of the proposition now follows with the help of

Pm 
 Pn = H
(n)
m+1 +

m−1∑
r=1

Pr ×̂H
(n)
m−r

which is a special case of (4.15). The second equality is obtained by application of ω to
the first. �

Adding the two expressions for Amn derived in the last proposition, leads to

Amn = −1

2

(
Pm+n + C

(n)
m+1 − H

(n)
m+1 +

m−1∑
r=1

(
C

(n)
m−r ×̂Pr − Pr ×̂H

(n)
m−r

))
(4.22)

and subtraction yields

Pm ◦ Pn = C
(n)
m+1 + H

(n)
m+1 +

m−1∑
r=1

(
C

(n)
m−r ×̂Pr + Pr ×̂ H

(n)
m−r

)
. (4.23)

As a consequence of propositions 4.4–4.6 and some results of the following subsection
(see (4.35) and (4.36)), the expressions C(m1,...,mr )

n and H(m1,...,mr )
n can be iteratively expressed
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completely in terms of only Pm,m = 1, 2, . . . , the main product ◦ and the ×̂ -product. We
will refer to this result in sections 7 and 8.

Equation (4.23) shows that the expressions constructed in this way are not all independent,
but satisfy certain identities, and these actually correspond to ncKP equations. This
correspondence will be firmly established in section 7. At this stage we already recognize it by
comparing identities derived above with corresponding formulae in section 5 of [6], keeping
the relations in the introduction and (3.9) in mind. In this way, the ncKP expression (5.31)
in [6] for φtmtn finds its algebraic counterpart in (4.23), provided that ∗ corresponds to ×̂ .
Such a (at this point still somewhat vague) correspondence is indeed observed between further
(x)ncKP relations in [6] and algebraic identities in this section. The first non-trivial equation
which arises from (4.23) is the one with m = n = 2 and yields

4P ◦ P3 − P ◦4 − 3P2 ◦ P2 = 6P ◦ (P ×̂P) − 6(P ×̂ P2 − P2 ×̂P) (4.24)

which should be compared with (1.13) (see also the end of section 5.3).
Taking further algebraic objects built with ≺ into consideration, we obtain additional

identities. With the choice {Pn,Amn} we have the identities (4.22) and a correspondence with
xncKP equations is achieved (cf (5.30) in [6]). This will be made precise in section 7.2. Since
the basis

{
Pm1...mk

}
of A(P ) contains more objects, one should expect that an extension of the

ncKP hierarchy exists which contains counterparts of all of them. This expectation will be
confirmed in section 8.

Let us recall the underlying idea which might have got lost during the development of
so much formalism. In the partial sum calculus realization, identities such as (4.23) become
relations between sums where the summations run from 1 to some number N ∈ N. The latter
number is completely arbitrary, however. Hence we obtain families of sum identities if we let
N run through the natural numbers. Mapping the original identities in A(P ) properly to partial
differential equations, as sketched in the introduction, the resulting differential equations will
be solvable by the ansatz (1.7) and thus admit KP-like soliton solutions.

4.2. Symmetric functions

A simple calculation yields

Pm ◦ Hn = Pm 
 Hn +
n−1∑
r=1

Hr ≺ Pm 
 Hn−r + Hn ≺ Pm

= Pm 
 Hn +
n−1∑
r=2

Hr−1 
 (P 
 Pm − Pm+1) 
 Hn−r

+ (P 
 Pm − Pm+1) 
 Hn−1 + Hn ≺ Pm

= Pm 
 Hn +
n−1∑
r=1

Hr 
 Pm 
 Hn−r −
n−2∑
r=1

Hr 
 Pm+1 
 Hn−r−1

− Pm+1 
 Hn−1 + Hn 
 Pm − Hn−1 
 Pm+1. (4.25)

Summing this relation properly, we obtain

nHn =
n∑

r=1

Pr ◦ Hn−r n ∈ N. (4.26)
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A similar calculation, or a simple application of the involution ψ to the last formula18, leads to

nCn =
n∑

r=1

(−1)r−1Cn−r ◦ Pr n ∈ N (4.27)

where

Cn := P ≺n = (−1)nC(1)
n n ∈ N. (4.28)

Defining generating functions (with an indeterminate λ) by

H(λ) :=
∑
n�0

Hnλ
n C(λ) :=

∑
n�0

Cnλ
n P (λ) :=

∑
n�1

Pnλ
n−1 (4.29)

where H0 = C0 = I with a unit19 I of the ◦-product, allows us to express (4.26) and (4.27) in
the form

d

dλ
H(λ) = P(λ) ◦ H(λ)

d

dλ
C(λ) = P(−λ) ◦ C(λ). (4.30)

Setting

P̃ (λ) :=
∫

P(λ) dλ =
∑
n�1

Pn

n
λn (4.31)

we find

H(λ) = eP̃ (λ)
◦ C(λ) = e−P̃ (−λ)

◦ (4.32)

where the exponentials are built with the ◦-product. This implies C(−λ) ◦H(λ) = I and thus
n∑

r=0

(−1)rCr ◦ Hn−r = 0. (4.33)

Moreover, recalling the definition

e
∑

n�1 xnλ
n =

∑
n�0

χn(x1, x2, x3, . . .)λ
n (4.34)

(with commuting variables xk, k = 1, 2, . . .) of the Schur polynomials, we obtain

Hn = χn(P, P2/2, P3/3, . . .) =
∑
|µ|=n

z−1
µ P

◦m1
1 ◦ · · · ◦ P ◦mn

n (4.35)

Cn = (−1)nχn(−P,−P2/2,−P3/3, . . .)

= (−1)n
∑
|µ|=n

z−1
µ (−1)m1+···+mnP

◦m1
1 ◦ · · · ◦ P ◦mn

n (4.36)

where the sum is over all partitions µ = (1m1 2m2 . . . nmn) of n (so that n = m11 + m22 + · · · +
mnn with mr ∈ N ∪ {0}), and

zµ :=
n∏

r=1

rmr mr !. (4.37)

Writing P = ∑
k�1 pkek in the case of the partial sum calculus,

�N(Pn) =
N∑

k=1

pn
k (4.38)

18 If we choose the involution ψ such that P ψ = P , then Pn
ψ = (−1)n−1Pn and Cn

ψ = Hn.
19 Here the unit element I is only introduced temporarily in order to achieve compact expressions in terms of the
exponential function.
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is the nth power sum,

�N(Cn) =
∑

1�k1<···<kn�N

pk1 · · ·pkn
(4.39)

the nth elementary symmetric polynomial, and

�N(Hn) =
∑

1�k1�···�kn�N

pk1 · · · pkn
(4.40)

the complete symmetric polynomial of degree n in N indeterminates p1, . . . , pN [35].

Remark. Applying the Rota–Baxter operator R defined in (3.10) to C(λ), using (4.28),
(4.29), (4.32) and (3.12), leads to

R
(
e−P̃ (−λ)
◦

) =
∑
n�0

λnR(R(· · · R(R(P ) • P) • · · ·) • P). (4.41)

On the other hand, according to (3.14) we have

R
(
e−P̃ (−λ)
◦

) = e−R(P̃ (−λ))
• . (4.42)

With the help of ln(1 + x) = −∑
n�1(−1)nxn/n, we can write

P̃ (−λ) =
∑
n�1

(−1)nP •nλn/n = −ln•(1 + λP ). (4.43)

Hence ∑
n�0

λnR(R(· · · R(R(P ) • P) • · · ·) • P) = exp•(−R(ln•(1 + λP ))) (4.44)

which is the famous Spitzer’s formula [14, 16, 36–38].

5. Embedding of A(P ) into an algebra generated by two elements

In the previous section, we suggested a correspondence between identities in A(P ) and
the ncKP hierarchy (and certain extensions). Writing P = ∑

n�1 pnen in the partial sum
realization and taking a look at the algebraic identities presented in the introduction, one
immediately concludes that a second element Q = ∑

n�1 qnen is required. But in this section
we show that it is actually sufficient to restrict considerations to A(P ). This covers an
important aspect of our framework (see also the conclusions). The material of the present
section is, however, not used in the following sections.

In the following, (A(P ), •) will not be regarded as unital, i.e., we exclude a possible unit
element E. It is convenient (though not necessary) to augment the algebra A by a new element
I. The necessary preparations are presented in the next two subsections. The third subsection
presents the main result, namely the existence of an ‘embedding’ � of A(P ) into an algebra
generated by two elements P,Q such that certain homomorphism properties hold. The last
subsection contains supplementary material (a generalization of symmetric functions).

5.1. The augmented algebra Ã

The new element I will be required to satisfy

I ≺ α = α = α ≺ I I 
 α = α = α 
 I I ◦ α = α = α ◦ I (5.1)
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which implies

α • I = I • α = 0. (5.2)

A further consequence is

(α 
 I ) ≺ β = α ≺ β α 
 (I ≺ β) = α 
 β (5.3)

which shows that we are forced to give up associativity in these particular combinations.
The augmented algebra Ã is again a graded algebra, with Ã0 = Ã0 = KI and

Ã = ⊕
r�0 Ãr = ⊕

r�0 Ãr where Ãr � Ar , Ãr � Ar for r � 1.
With each A ∈ Ã1 we associate products via (2.30) and (2.31) which are essentially20

combined associative with all other products defined so far, with the exception of the main
product, and thus also among themselves. In particular, we have

(αǍβ)B̂γ = αǍ(βB̂γ ) (αÂβ)B̌γ = αÂ(βB̌γ ) (5.4)

for all A,B ∈ Ã1, α, β, γ ∈ Ã, and

(αÂβ)B̂γ = αÂ(βB̂γ )

(αǍβ)B̌γ = αǍ(βB̌γ )
if β �= I (5.5)

so that we are allowed to drop the brackets and simply write, e.g., αÂβB̂γ if β �= I . Since

I ÂI = A I Âα = A 
 α αÂI = α ≺ A (5.6)

I ǍI = A I Ǎα = A ≺ α αǍI = α 
 A (5.7)

we can express any element of Ã in terms of these operators. For example,

A1 
 A2 ≺ A3 ≺ A4 
 A5 = (A1 
 A2 ≺ A3)Â4A5

= ((A1 
 A2)Â3I )Â4(I Â5I ) = ((I Â1(I Â2I ))Â3I )Â4(I Â5I )

= (I Â1(I Â2I )Â3I )Â4(I Â5I ) =: I Â1(I Â2I )(Â3I )Â4(I Â5I )

where we introduced a simplified notation in the last step. The remaining brackets take care
of the non-associativity of certain products with I. In the same way we get

A1 
 A2 ≺ A3 ≺ A4 
 A5 = (I Ǎ1I )Ǎ2(I Ǎ3)(I Ǎ4I )Ǎ5I.

Eliminating the I at both ends, we obtain two linear maps, α �→ α̂, respectively α �→ α̌. In
particular,

A1 
 A2 ≺ A3 ≺ A4 
 A5 ˆ�→ Â1(I Â2I )(Â3I )Â4(I Â5)

A1 
 A2 ≺ A3 ≺ A4 
 A5 ˇ�→ (Ǎ1I )Ǎ2(I Ǎ3)(I Ǎ4I )Ǎ5.

The following properties are quite evident:

α ≺ β ˆ�→ (α̂I )β̂ α 
 β ˆ�→ α̂(I β̂)

α ≺ β ˇ�→ α̌(I β̌) α 
 β ˇ�→ (α̌I )β̌.

The identities (2.10) and (2.11) can be written as

A ◦ α = I Âα +
∑

α(1)Âα(2) + αÂI =:
∑′

α(1)Âα(2) (5.8)

α ◦ A = I Ǎα +
∑

α(1)Ǎα(2) + αǍI =:
∑′

α(1)Ǎα(2). (5.9)

20 Non-associativity only appears in special expressions involving I.
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5.2. The augmented subalgebra Ã(P )

Let Ã(P ) be the subalgebra of Ã obtained from the algebra A(P ), which is generated by a
single element P ∈ A1, by augmenting it with I. Then

Pn = I P̂nI n ∈ N. (5.10)

Clearly, (Ã1(P ), •) is commutative, and thus also (Ã(P ), ◦) according to theorem 2.1.

Lemma 5.1. The following identities hold for all n ∈ N,

P̂n+1 = P̂(I P̂n) − (P̂I )P̂n (5.11)

P̌n+1 = (P̌I )P̌n − P̌(I P̌n). (5.12)

Proof.

αP̂n+1β = α ≺ (P 
 Pn − P ≺ Pn) 
 β = αP̂(Pn 
 β) − α ≺ (P P̂nβ)

= αP̂(I P̂n)β − (αP̂I )P̂nβ.

The second identity is verified in the same way. �

The product ×̂ introduced in section 4, extended to Ã, is essentially associative:

(α ×̂β) ×̂ γ = α ×̂ (β ×̂ γ ) ∀α, β, γ ∈ Ã(P ), β �= I. (5.13)

Note that

I ×̂ I = −P I ×̂α = −P 
 α α ×̂ I = −α ≺ P. (5.14)

By iterative use of (5.11), we can express P̂n in terms of only I and the product ×̂ . For
example,

αP̂2β = αP̂(I P̂)β − α(P̂I )P̂β = −α ×̂ (I P̂β) + (αP̂I ) ×̂ β

= α ×̂ (I ×̂β) − (α ×̂ I ) ×̂ β. (5.15)

Since we have

Pm ≺ Pn = PmP̂nI Pm 
 Pn = I P̂mPn (5.16)

and similar formulae for expressions of higher grade, it follows that the algebraic structure
of Ã(P ) can be expressed completely in terms of the element I and the product ×̂ . Further
examples of expressions in terms of I are Cn = I (P̂I )n, Hn = (I P̂)nI ,

Pm1...mk
= (

I P̂m1I
)(

P̂m2I
) · · · (P̂mk

I
)

(5.17)

and (cf (5.8))

Pn ◦ Pm1...rk
=

k∑
l=0

((
I P̂m1I

) · · · (P̂ml
I
))

P̂n

((
I P̂ml+1I

) · · · (P̂mk
I
))

. (5.18)
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5.3. The embedding

Let Ã(P,Q) denote the subalgebra of Ã generated by two fixed elements P,Q ∈ A1 with
the property P • Q = Q • P , so that (Ã1, •) is commutative and then, by theorem 2.1, also
(Ã(P,Q), ◦). Let us introduce the product

α × β := −αTβ = α 
 Q ≺ β − α ≺ P 
 β (5.19)

where

T := P̂ − Q̌. (5.20)

The product × is essentially associative, i.e.,

(α × β) × γ = α × (β × γ ) (5.21)

for all α, β, γ ∈ Ã(P,Q) with β �= I .
Next we define a linear map � : Ã(P ) → Ã(P,Q) by �(I) = I and the homomorphism

property

�(α ×̂ β) = �(α) × �(β) ∀α, β ∈ Ã(P ). (5.22)

Since I generates Ã(P ) using the product ×̂ , this defines � on Ã(P ). In particular, it leads to

�(P ) = −�(I ×̂ I ) = −�(I) × �(I) = −I × I = P − Q = ITI (5.23)

and

�(P 
 α) = IT�(α) �(α ≺ P) = �(α)TI. (5.24)

Resolving the definitions of the two products in (5.22), the homomorphism property of �

reads �(αP̂β) = �(α)T�(β), which can be expressed in the short form �(P̂) = T.

Proposition 5.1.

�(P̂n) = P̂n − Q̌n n = 1, 2, . . . (5.25)

where P̂n and Q̌n are determined by Pn = P •n and Qn = Q•n, respectively.

Proof. By construction of �, (5.25) holds for n = 1. Let us now assume that �(P̂n) = P̂n −
Q̌n =: Tn holds for fixed n ∈ N. Then � applied to (5.11) yields

�(αP̂n+1β) = �(αP̂(I P̂n)β) − �(α(P̂I )P̂nβ)

= −�(α) × �(I P̂nβ) − �(αP̂I )Tn�(β)

= �(α)T(�(I)Tn�(β)) − (�(α)TI )Tn�(β)

= �(α)(T(ITn) − (TI )Tn)�(β).

Making use of (5.4), (5.11) and (5.12), we find

T(ITn) − (TI )Tn = P̂(I P̂n) − (P̂I )P̂n + Q̌(I Q̌n) − (Q̌I )Q̌n = P̂n+1 − Q̌n+1.

Hence �(P̂n+1) = P̂n+1 − Q̌n+1 which completes the induction. �

Resolving the definitions involved, (5.25) reads

�(α ≺ Pn 
 β) = �(α) ≺ Pn 
 �(β) − �(α) 
 Qn ≺ �(β). (5.26)

In particular, we obtain

�(α ≺ Pn) = �(α) ≺ Pn − �(α) 
 Qn

�(Pn 
 β) = Pn 
 �(β) − Qn ≺ �(β).
(5.27)
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Theorem 5.1. The map � defined above is a main product homomorphism, i.e.,

�(α ◦ β) = �(α) ◦ �(β) ∀α, β ∈ Ã(P ). (5.28)

Proof. First we prove this property for α, β ∈ Ã1(P ). It is sufficient to consider

�(Pr ◦ Ps) = �(Pr 
 Ps + Ps ≺ Pr) = �(I P̂rPs + Ps P̂r I ) = ITrTs + TsTr I

= Pr ◦ (Ps − Qs) − (Ps − Qs) ◦ Qr = (Pr − Qr) ◦ (Ps − Qs)

where Tr := P̂r − Q̌r , Tr := Pr − Qr (in deviation from our previous notation), and we
used the commutativity of the main product in the last step. Hence �(Pr ◦ Ps) = Tr ◦ Ts =
�(Pr) ◦ �(Ps) and thus �(A ◦ B) = �(A) ◦ �(B) for all A,B ∈ Ã1(P ).

Next, we show that �(A◦β) = �(A)◦�(β),∀β ∈ Ã(P ). It suffices to consider A = Pn

and

β = Pm1 ≺ · · · ≺ Pmk
= (

I P̂m1I
)(

P̂m2I
) · · · (P̂mk

I
)
.

By use of (5.18) and proposition 5.1, we find

�(Pn ◦ β) =
∑′

�(β(1)P̂nβ(2)) =
∑′

�(β(1))Tn�(β(2)).

Iterated application of proposition 5.1 leads to

�
(
Pm1 ≺ · · · ≺ Pmj

) = �
((

I P̂m1I
) · · · (P̂mj

I
)) = (

ITm1I
) · · · (Tmj

I
)

�
(
Pmj+1 ≺ · · · ≺ Pmk

) = �
((

I P̂mj+1I
) · · · (P̂mk

I
)) = (

ITmj+1I
) · · · (Tmk

I
)

and

�(β) = (
ITm1I

) · · · (Tmj
I
)(

Tmj+1I
) · · · (Tmk

I
)

so that

�(β(1)) = �(β)(1) �(β(2)) = �(β)(2).

It follows that

�(Pn ◦ β) =
∑′

�(β)(1)Tn�(β)(2)

=
∑′

�(β)(1)P̂n�(β)(2) −
∑′

�(β)(1)Q̌n�(β)(2)

= Pn ◦ �(β) − �(β) ◦ Qn = Tn ◦ �(β)

where we used (2.35), (2.36), and again the commutativity of the main product in the last two
steps. This implies �(A ◦ β) = �(A) ◦ �(β).

Finally, we prove our assertion in the general case by induction. We assume that it holds
for all α ∈ Ãm(P ) where 1 � m � n for fixed n, and all β ∈ Ã(P ). The induction step is
then carried out with the help of (2.17), i.e.,

(Pr 
 α) ◦ β = I P̂r (α ◦ β) +
∑

β(1)P̂r (α ◦ β(2)) + βP̂rα =
∑′

β(1)P̂r (α ◦ β(2)).

Applying � and using proposition 5.1, leads to

�((Pr 
 α) ◦ β) =
∑′

�(β(1))Tr�(α ◦ β(2)) =
∑′

�(β)(1)Tr�(α) ◦ �(β)(2)

=
∑′

�(β)(1)P̂r�(α) ◦ �(β)(2) −
∑′

�(β)(1)Q̌r�(α) ◦ �(β)(2)

= (Pr 
 �(α)) ◦ �(β) − �(β) ◦ (Qr ≺ �(α))

= �(Pr 
 α) ◦ �(β)

where we made use of (2.17), (2.18), and the commutativity of the ◦ product. This implies
that our assertion also holds for α ∈ Ãn+1(P ). �
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For generic Q, the map � : Ã(P ) → Ã(P,Q) is injective. It follows that �

is an isomorphism of the (double) algebras (A(P ), ×̂ , ◦) and (A(P/Q),×, ◦) where
A(P/Q) := �(A(P )).21 Applying � and afterwards �N to the identity (4.24), for example,
we recover the algebraic sum identity (1.13).

5.4. ‘Supersymmetric’ functions

Let us introduce

T̃ (λ) :=
∑
n�1

Tn

n
λn := P̃ (λ) − Q̃(λ) (5.29)

where P̃ (λ) is given by (4.31) and Q̃(λ) is defined in the same way (with P replaced by Q).
Using the commutativity of ◦, we obtain

HP/Q(λ) :=
∑
n�0

HP/Q
n λn := eT̃ (λ)

◦ = eP̃ (λ)
◦ ◦ e−Q̃(λ)

◦ = HP (λ) ◦ CQ(−λ) (5.30)

where HP (λ) is given by the first of relations (4.32), and CQ(λ) by the second with P replaced
by Q. Hence

HP/Q
n =

n∑
r=0

(−1)n−rHP
r ◦ C

Q
n−r . (5.31)

In the same way, we obtain

CP/Q(λ) :=
∑
n�0

CP/Q
n λn := e−T̃ (−λ)

◦ CP/Q
n = (−1)nHQ/P

n . (5.32)

As a consequence of theorem 5.1,

HP/Q
n = �

(
HP

n

)
CP/Q

n = �
(
CP

n

)
. (5.33)

Using P = ∑
n�1 pnen and Q = ∑

n�1 qnen in the partial sum calculus, we obtain

�N(Tr) =
N∑

k=1

(
pr

k − qr
k

)
. (5.34)

A function f (p1, . . . , pN, q1, . . . , qN) is called doubly symmetric if it is invariant under
permutations of p1, . . . , pN , as well as permutations of q1, . . . , qN .22 A doubly symmetric
function is called supersymmetric if the substitution q1 = p1 results in a function which is
independent of p1 [40].23 Together with 1, the sums (5.34) actually generate the algebra of
supersymmetric polynomials of N +N indeterminates [40]. Then �N

(
C

P/Q
n

)
and �N

(
H

P/Q
n

)
are the elementary, respectively the complete supersymmetric polynomials (see [42]).

6. From A(P ) to the algebra of ΨDOs

In the following, R denotes the K-algebra of formal pseudo-differential operators generated
by a generic24 L of the form (1.2) with the product ∗ and the projection ( )�0. For X, Y ∈ R,

X � Y := X�0 ∗ Y�0 − X<0 ∗ Y<0

= X�0 ∗ Y − X ∗ Y<0 = X ∗ Y�0 − X<0 ∗ Y (6.1)

21 From the construction of � it is evident that the elements of A(P/Q) are invariant under simultaneous translations
P �→ P + A, Q �→ Q + A with any A ∈ Ã1 such that A • P = P • A = 0 and A • Q = Q • A = 0.
22 Generalizations are sometimes called ‘multi-symmetric functions’, see [39] and the references cited therein.
23 Such functions have been called bisymmetric in [41].
24 In the sense that no non-trivial identities should hold in R.
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defines an associative product25 R×R → R. As an immediate consequence of its definition,
� has the property

res(X � Y ) = 0 ∀X, Y ∈ R. (6.2)

In this section we considerA(P ) not as unital, i.e., we exclude a possible unit element from
the algebra. A corresponding extension is certainly possible, but not needed for our purposes.
Let �, r : A(P ) → R be the two linear maps defined iteratively by �(P ) = r(P ) = L and

�(α ≺ P) = −�(α)<0 ∗ L �(α 
 P) = �(α)�0 ∗ L (6.3)
r(P ≺ α) = −L ∗ r(α)�0 r(P 
 α) = L ∗ r(α)<0. (6.4)

The pseudo-differential operators defined by

Lm1,...,mk := �
(
Pm1...mk

)
(6.5)

will be important in the following. In particular, they are used to define operators δm1...mk
in R

iteratively by

δm1...mk
L = −[

L
m1,...,mk

<0 , L
]

+
k−1∑
j=1

(
δm1...mj

L
) ∗ L

mj+1,...,mk

<0 (6.6)

δm1...mk
(X�0) = (

δm1...mk
X

)
�0 (6.7)

and the generalized derivation rule

δm1...mk
(X ∗ Y ) =

k∑
j=0

(
δm1...mj

X
) ∗ (

δmj+1...mk
Y

)
(6.8)

where δm1...mj
= id if j = 0 and δmj+1...mk

= id if j = k. We already met the simplest members
δn of this family in the introduction, for which the last formula reduces to the ordinary
derivation rule. After some preparations in the first two subsections, the third demonstrates
that the δm1...mk

commute with each other. In the last subsection we explore properties of the
linear map � : A(P ) → R0 defined by

�(α) := res(�(α)) ∀α ∈ A(P ). (6.9)

This map will play a crucial role in the following sections. The reader may jump from here
directly to section 7 and skip the more technical subsections on first reading.

6.1. Properties of the maps � and r

Lemma 6.1.

�(Pn) = Ln = r(Pn) n = 1, 2, . . . . (6.10)

Proof. Using the definition of �, we find

�(Pn+1) = �(Pn • P) = �(Pn 
 P) − �(Pn ≺ P) = �(Pn)�0 ∗ L + �(Pn)<0 ∗ L = �(Pn) ∗ L.

Now the statement for � follows by induction. The corresponding statement for the map r is
obtained in the same way. �

25 This product already appeared in [24]. It is an example of an associative product defined more generally in the
framework of Rota–Baxter algebras, see appendix A. Indeed, R(X) := X�0 defines a Rota–Baxter operator on the
algebra (R, ∗). Then X � Y = R(X) ∗ Y + X ∗ R(Y ) − X ∗ Y .
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Lemma 6.2. For n ∈ N we have

�(α ≺ Pn) = −�(α)<0 ∗ Ln (6.11)

�(α 
 Pn) = �(α)�0 ∗ Ln (6.12)

r(Pn ≺ α) = −Ln ∗ r(α)�0 (6.13)

r(Pn 
 α) = Ln ∗ r(α)<0. (6.14)

Proof.

�(α ≺ Pn+1) = �(α ≺ Pn • P) = �((α ≺ Pn) 
 P) − �((α ≺ Pn) ≺ P)

= �(α ≺ Pn)�0 ∗ L + �(α ≺ Pn)<0 ∗ L = �(α ≺ Pn) ∗ L.

Together with �(α ≺ P) = −�(α)<0 ∗ L, the first relation of the lemma follows by induction.
The other relations are obtained in an analogous way. �

By iterated application of the preceding lemma, we obtain

Lm1,...,mk = (−1)k−1((. . . (Lm1
<0 ∗ Lm2)<0 . . .)<0 ∗ Lmk−1)<0 ∗ Lmk (6.15)

L̃m1,...,mk := r
(
Pm1...mk

) = (−1)k−1Lm1 ∗ (Lm2 ∗ (. . . (Lmk−1 ∗ Lmk �0)�0 . . .)�0)�0. (6.16)

Since the elements Pm1...mk
defined in (4.4) span A(P ), this allows us to compute �(α) and

r(α) for all α ∈ A(P ).

Proposition 6.1. In terms of 26 −→
R X := X�0 and X

←−
R := X<0 the following identity holds

in R,

X1 ∗ −→
R X2 ∗ · · · ∗ −→

R Xk = X1
←−
R ∗ · · · ∗ Xk−1

←−
R ∗ Xk

+
k−1∑
j=1

(X1
←−
R ∗ · · · ∗ Xj−1

←−
R ∗ Xj) � (Xj+1 ∗ −→

R Xj+2 ∗ · · · ∗ −→
R Xk). (6.17)

Proof. The formula is easily verified for k = 2. The general formula is proved by induction
on k. For k + 1 we write the left-hand side as

X1 ∗ −→
R X2 ∗ · · · ∗ −→

R Xk+1 = X1 ∗ −→
R X2 ∗ · · · ∗ −→

R Xk−1 ∗ −→
R (Xk ∗ −→

R Xk+1)

to which we can now apply the induction hypothesis. After use of the identities

Xk ∗ −→
R Xk+1 = (Xk

←−
R ) ∗ Xk+1 + Xk � Xk+1

and

Y ∗ (Xk � Xk+1) − (Y ∗ (
−→
R Xk))

←−
R ∗ Xk+1 − (Y ∗ Xk) � Xk+1 = 0

for Y with Y = Y
←−
R = Y<0, the formula with k replaced by k + 1 results. �

Corollary.

L̃m1,...,mk = Lm1,...,mk −
k−1∑
j=1

Lm1,...,mj � L̃mj+1,...,mk (6.18)

26 This notation avoids complex nested expressions such as those in (6.15) and (6.16). For example, X1 ∗ −→
R X2 ∗

· · · ∗ −→
R Xk = X1 ∗ (X2 ∗ (. . . (Xk)�0)�0 . . .)�0.
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and thus

r(α) = �(α) −
∑

�(α(1)) � r(α(2)) ∀α ∈ A(P ). (6.19)

Lemma 6.3.

r
(
Pm1...mk

◦ Pn

) = −L
m1,...,mk

<0 ∗ Ln −
k−1∑
j=1

L
m1,...,mj

<0 ∗ Ln ∗ L̃
mj+1,...,mk

<0

+ Ln ∗ L̃
m1,...,mk

<0 −
k∑

j=1

Lm1,...,mj � r
(
Pmj+1...mk

◦ Pn

)
. (6.20)

Proof. Using (2.13), the commutativity of ◦, and (2.7), we find

Pm1...mk
◦ Pn = (

Pm1 ≺ Pm2...mk

) ◦ Pn

= (
Pm1 ◦ Pn − Pm1 ≺ Pn

) ≺ Pm2...mk
+ Pm1 ≺ (

Pm2...mk
◦ Pn

)
= Pn 
 Pm1...mk

+ Pm1 ≺ (
Pm2...mk

◦ Pn

)
so that

r
(
Pm1...mk

◦ Pn

) = r
(
Pm1 ≺ Pm2...mk

◦ Pn

)
+ r

(
Pn 
 Pm1...mk

)
= −�

(
Pm1

) ∗ r
(
Pm2...mk

◦ Pn

)
�0 + �(Pn) ∗ r

(
Pm1...mk

)
<0

= −�
(
Pm1

)
<0 ∗ r

(
Pm2...mk

◦ Pn

) − �
(
Pm1

)
� r

(
Pm2...mk

◦ Pn

)
+ �(Pn) ∗ r

(
Pm1...mk

)
<0

and

�
(
Pm1

)
<0 ∗ r

(
Pm2...mk

◦ Pn

) = �
(
Pm1

)
<0 ∗ (

r
(
Pm2 ≺ Pm3...mk

◦ Pn

)
+ r

(
Pn 
 Pm2...mk

))
= �

(
Pm1

)
<0 ∗ (−Lm2 ∗ r

(
Pm3...mk

◦ Pn

)
�0 + r

(
Pn 
 Pm2...mk

))
= �

(
Pm1m2

) ∗ r
(
Pm3...mk

◦ Pn

)
�0 + �

(
Pm1

)
<0 ∗ r

(
Pn 
 Pm2...mk

)
= �

(
Pm1m2

)
<0 ∗ r

(
Pm3...mk

◦ Pn

)
+ �

(
Pm1m2

)
� r

(
Pm3...mk

◦ Pn

)
+ �

(
Pm1

)
<0 ∗ Ln ∗ r

(
Pm2...mk

)
<0.

By iteration, we obtain

r
(
Pm1...mk

◦ Pn

) = �(Pn) ∗ r
(
Pm1...mk

)
<0 −

k−1∑
j=1

�
(
Pm1...mj

)
� r

(
Pmj+1...mk

◦ Pn

)

−
k−2∑
j=1

�
(
Pm1...mj

)
<0 ∗ Ln ∗ r

(
Pmj+1...mk

)
<0 − �

(
Pm1...mk−1

)
<0 ∗ r

(
Pmk

◦ Pn

)
.

Next we convert the last term:

�
(
Pm1...mk−1

)
<0 ∗ r

(
Pmk

◦ Pn

) = �
(
Pm1...mk−1

)
<0 ∗ r

(
Pmk

≺ Pn + Pn 
 Pmk

)
= �

(
Pm1...mk−1

)
<0 ∗ ( − Lmk ∗ Ln�0 + Ln ∗ r

(
Pmk

)
<0

)
= �

(
Pm1...mk

) ∗ Ln�0 + �
(
Pm1...mk−1

)
<0 ∗ Ln ∗ r

(
Pmk

)
<0

= �
(
Pm1...mk

)
<0 ∗ Ln + �

(
Pm1...mk

)
� r(Pn) + �

(
Pm1...mk−1

)
<0 ∗ Ln ∗ r

(
Pmk

)
<0.

Insertion of this result into the previous formula yields (6.20). �
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Lemma 6.4.

r
(
Pm1...mk

◦ (Pn ≺ α)
) = −Ln ∗ r

(
Pm1...mk

◦ α
)
�0 −

k∑
j=1

L
m1,...,mj

�0 ∗ Ln ∗ r
(
Pmj+1...mk

◦ α
)
�0

−
k∑

j=1

Lm1,...,mj � r
(
Pmj+1...mk

◦ (Pn ≺ α)
)
. (6.21)

Proof. First we note that (2.20) implies the identity

Pm1...mk
◦ (Pn ≺ α) = (

Pm1 ≺ Pm2...mk

) ◦ (Pn ≺ α)

= Pm1 ≺ (
Pm2...mk

◦ (Pn ≺ α)
)

+ Pn ≺ (
Pm1...mk

◦ α
)

+ Pm1+n ≺ (
Pm2...mk

◦ α
)

so that

r
(
Pm1...mk

◦ (Pn ≺ α)
) = −Lm1 ∗ r

(
Pm2...mk

◦ (Pn ≺ α)
)
�0 − Ln ∗ r

(
Pm1...mk

◦ α
)
�0

−Lm1+n ∗ r
(
Pm2...mk

◦ α
)
�0

= −L
m1
<0 ∗ r

(
Pm2...mk

◦ (Pn ≺ α)
) − Lm1 � r

(
Pm2...mk

◦ (Pn ≺ α)
)

−Ln ∗ r
(
Pm1...mk

◦ α
)
�0 − Lm1+n ∗ r

(
Pm2...mk

◦ α
)
�0.

This is a recursion formula, so we can rewrite the first term on the right-hand side as follows:

L
m1
<0 ∗ r

(
Pm2...mk

◦ (Pn ≺ α)
)

= L
m1
<0 ∗ (−Lm2 ∗ r

(
Pm3...mk

◦ (Pn ≺ α)
)
�0 − Ln ∗ r

(
Pm2...mk

◦ α
)
�0

−Lm2+n ∗ r
(
Pm3...mk

◦ α
)
�0

)
= Lm1,m2 ∗ r

(
Pm3...mk

◦ (Pn ≺ α)
)
�0 − L

m1
<0 ∗ Ln ∗ r

(
Pm2...mk

◦ α
)
�0

+ Lm1,m2 ∗ Ln ∗ r
(
Pm3...mk

◦ α
)
�0

= L
m1,m2
<0 ∗ r

(
Pm3...mk

◦ (Pn ≺ α)
)

+ Lm1,m2 � r
(
Pm3...mk

◦ (Pn ≺ α)
)

−L
m1
<0 ∗ Ln ∗ r

(
Pm2...mk

◦ α
)
�0 + Lm1,m2 ∗ Ln ∗ r

(
Pm3...mk

◦ α
)
�0.

Hence we obtain

r
(
Pm1...mk

◦ (Pn ≺ α)
) = −L

m1,m2
<0 ∗ r

(
Pm3...mk

◦ (Pn ≺ α)
) − Ln ∗ r

(
Pm1...mk

◦ α
)
�0

−L
m1
�0 ∗ Ln ∗ r

(
Pm2...mk

◦ α
)
�0 − Lm1,m2 ∗ Ln ∗ r

(
Pm3...mk

◦ α
)
�0

−Lm1 � r
(
Pm2...mk

◦ (Pn ≺ α)
) − Lm1,m2 � r

(
Pm3...mk

◦ (Pn ≺ α)
)
.

In the next step we proceed as follows:

L
m1,m2
<0 ∗ r

(
Pm3...mk

◦ (Pn ≺ α)
) = L

m1,m2,m3
<0 ∗ r

(
Pm4...mk

◦ (Pn ≺ α)
)

+ Lm1,m2,m3 � r
(
Pm4...mk

◦ (Pn ≺ α)
) − L

m1,m2
<0 ∗ Ln ∗ r

(
Pm3...mk

◦ α
)
�0

+ Lm1,m2,m3 ∗ Ln ∗ r
(
Pm4...mk

◦ α
)
�0

and so forth. In the last step, we have to use

Pmk
◦ (Pn ≺ α) = Pmk

≺ Pn ≺ α + Pn ≺ (
Pmk

◦ α
)

+ Pmk+n ≺ α

which follows from (2.12) and (2.7), so that

L
m1,...,mk−1
<0 ∗ r

(
Pmk

◦ (Pn ≺ α)
) = L

m1,...,mk

�0 ∗ Ln ∗ r(α)�0 + Lm1,...,mk � r(Pn ≺ α)

−Lm1,...,mk−1 ∗ Ln ∗ r
(
Pmk

◦ α
)
�0.

Finally we obtain (6.21). �
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6.2. Properties of the generalized derivations

Lemma 6.5.

δm1...mk
Ln = −[

L
m1,...,mk

<0 , Ln
]

+
k−1∑
j=1

(
δm1...mj

Ln
) ∗ L

mj+1,...,mk

<0 (6.22)

δm1...mk
Ln = [

L
m1,...,mk

�0 , Ln
] −

k−1∑
j=1

(
δm1...mj

Ln
) ∗ L

mj+1,...,mk

�0 . (6.23)

Proof. By definition, the first equality holds for n = 1 and arbitrary k ∈ N. Fix k and n and
suppose it holds with k replaced by any j ∈ N with j < k and n replaced by any m ∈ N with
m � n. Using this and the generalized derivation property, we find

δm1...mk
Ln+1 = (

δm1...mk
Ln

) ∗ L + Ln ∗ δm1...mk
L +

k−1∑
j=1

(
δm1...mj

Ln
) ∗ δmj+1...mk

L

= − [
L

m1,...,mk

<0 , Ln+1
]

+
k−1∑
i=1

(
δm1...mi

Ln
) ∗

k−1∑
j=i

(
δmi+1...mj

L
) ∗ L

mj+1,...,mk

<0

+
k−1∑
j=1

Ln ∗ (
δm1...mj

L
) ∗ L

mj+1,...,mk

<0

= − [
L

m1,...,mk

<0 , Ln+1
]

+
k−1∑
j=1

(
j∑

i=1

(
δm1...mi

Ln
) ∗ δmi+1...mj

L

+ Ln ∗ δm1...mj
L

)
∗ L

mj+1,...,mk

<0

= − [
L

m1,...,mk

<0 , Ln+1
]

+
k−1∑
j=1

(
δm1...mj

Ln+1
) ∗ L

mj+1,...,mk

<0

so that (6.22) also holds for n + 1. Our second expression for δm1...mk
Ln now follows with the

help of[
L

m1,...,mk

�0 , Ln
] = [

Lm1,...,mk − L
m1,...,mk

<0 , Ln
] = −[

L
m1,...,mk−1
<0 ∗ Lmk , Ln

] − [
L

m1,...,mk

<0 , Ln
]

= −[
L

m1,...,mk−1
<0 , Ln

] ∗ Lmk − [
L

m1,...,mk

<0 , Ln
]

=

δm1...mk−1L

n −
k−2∑
j=1

(
δm1...mj

Ln
) ∗ L

mj+1,...,mk−1

<0


 ∗ Lmk − [

L
m1,...,mk

<0 , Ln
]

=
k−1∑
j=1

(
δm1...mj

Ln
) ∗ Lmj+1,...,mk − [

L
m1,...,mk

<0 , Ln
]
.

�

In particular, we have

δm(∂) = δm(L�0) = (δmL)�0 = (−[(Lm)<0, L])�0 = 0. (6.24)

By induction, using (6.22), it follows that

δm1...mk
(∂) = 0 k = 1, 2, . . . . (6.25)
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Using the fact that ∂−1 is the inverse of ∂ , this in turn implies

δm1...mk
(∂−1) = 0 k = 1, 2, . . . . (6.26)

The main result of this subsection is stated next.

Proposition 6.2.

δm1...mk
�(α) = �

(
Pm1...mk

◦ α
) −

k−1∑
j=0

�
(
Pm1...mj

◦ α
)

� r
(
Pmj+1...mk

)
(6.27)

δm1...mk
r(α) = r

(
Pm1...mk

◦ α
)

+
k∑

j=1

�
(
Pm1...mj

)
� r

(
Pmj+1...mk

◦ α
)
. (6.28)

The remainder of this subsection is devoted to the proof of this proposition. Let us define

δ′
m1...mk

�(α) := �
(
Pm1...mk

◦ α
) −

k−1∑
j=0

�
(
Pm1...mj

◦ α
)

� r
(
Pmj+1...mk

)
(6.29)

δ′′
m1...mk

r(α) := r
(
Pm1...mk

◦ α
)

+
k∑

j=1

�
(
Pm1...mj

)
� r

(
Pmj+1...mk

◦ α
)
. (6.30)

We have to show that δ′
m1...mk

and δ′′
m1...mk

coincide with δm1...mk
on �(A(P )), respectively

r(A(P )).

Lemma 6.6.

δ′
m1...mk

Ln = δ′′
m1...mk

Ln = δm1...mk
Ln. (6.31)

Proof. First we note that

δ′′
m1...mk

Ln = δ′′
m1...mk

r(Pn) = r
(
Pm1...mk

◦ Pn

)
+

k∑
j=1

�
(
Pm1...mj

)
� r

(
Pmj+1...mk

◦ Pn

)

which can be further evaluated with the help of (6.20),

δ′′
m1...mk

Ln = −L
m1,...,mk

<0 ∗ Ln −
k−1∑
j=1

L
m1,...,mj

<0 ∗ Ln ∗ L̃
mj+1,...,mk

<0 + Ln ∗ L̃
m1,...,mk

<0 .

Next we use (6.18) and (X � Y )<0 = −X<0 ∗ Y<0 to obtain

δ′′
m1...mk

Ln +
[
L

m1,...,mk

<0 , Ln
] = −

k−1∑
j=1

[
L

m1,...,mj

<0 , Ln
] ∗ L̃

mj+1,...,mk

<0 .

Using this formula, we will prove by induction that δ′′
m1...mk

Ln equals the right-hand side of
(6.22). For k = 2, the last relation reads

δ′′
m1m2

Ln = −[
L

m1,m2
<0 , Ln

] − [
L

m1
<0, L

n
] ∗ L̃

m2
<0 = −[

L
m1,m2
<0 , Ln

]
+

(
δm1L

n
) ∗ L

m2
<0
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where we used δmLn = −[
Lm

<0, L
n
]
. Let us now fix k and assume that δ′′

m1...mk
Ln = δm1...mk

Ln

holds for m1, . . . , mj with 2 � j � k. Then it also holds for k + 1 since

δ′′
m1...mk+1

Ln +
[
L

m1,...,mk+1
<0 , Ln

] = −
k∑

j=1

[
L

m1,...,mj

<0 , Ln
] ∗ L̃

mj+1,...,mk+1

<0

=
k∑

j=1

(
δm1...mj

Ln
) ∗ L̃

mj+1,...,mk+1

<0 −
k∑

j=1

j−1∑
l=1

(
δm1...ml

Ln
) ∗ L

ml+1,...,mj

<0 ∗ L̃
mj+1,...,mk+1

<0

=
k∑

j=1

(
δm1...mj

Ln
) ∗ L̃

mj+1,...,mk+1

<0 −
k−1∑
l=1

(
δm1...ml

Ln
) ∗

k∑
j=l+1

L
ml+1,...,mj

<0 ∗ L̃
mj+1,...,mk+1

<0

=
k∑

j=1

(
δm1...mj

Ln
) ∗ L

mj+1,...,mk+1

<0

using again the ‘negative’ part of (6.18) in the form

k∑
j=l+1

L
m1,...,mj

<0 ∗ L̃
mj+1,...,mk+1

<0 = L̃
ml+1,...,mk+1
<0 − L

ml+1,...,mk+1
<0 .

The equality δ′
m1...mk

= δm1...mk
is obtained in the same way. �

Lemma 6.7. The following are identities for all n ∈ N,

δ′
m1...mk

(�(α)<0 ∗ Ln) =
k∑

j=0

(
δ′
m1...mj

�(α)
)
<0 ∗ δmj+1...mk

Ln (6.32)

δ′′
m1...mk

(Ln ∗ r(α)�0) =
k∑

j=0

(
δm1...mj

Ln
) ∗ (

δ′′
mj+1...mk

r(α)
)
�0. (6.33)

Proof. Using (6.21), we obtain

δ′′
m1...mk

r(Pn ≺ α) = −Ln ∗ r
(
Pm1...mk

◦ α
)
�0 −

k∑
j=1

L
m1,...,mj

�0 ∗ Ln ∗ r
(
Pmj+1...mk

◦ α
)
�0

and thus

δ′′
m1...mk

r(Pn ≺ α) = −Ln ∗ δ′′
m1...mk

r(α)�0 −
k∑

j=1

[
L

m1,...,mj

�0 , Ln
] ∗ r

(
Pmj+1...mk

◦ α
)
�0.

Now we eliminate the commutator via (6.23) to get

δ′′
m1...mk

r(Pn ≺ α) = −Ln ∗ δ′′
m1...mk

r(α)�0 −
k∑

j=1

(
δm1...mj

Ln
) ∗ r

(
Pmj+1...mk

◦ α
)
�0

+
k∑

j=2

j−1∑
l=1

(
δm1...ml

Ln
) ∗ L

ml+1,...,mj

�0 ∗ r
(
Pmj+1...mk

◦ α
)
�0

= −Ln ∗ δ′′
m1...mk

r(α)�0 −
k∑

j=1

(
δm1...mj

Ln
) ∗ r

(
Pmj+1...mk

◦ α
)
�0
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+
k−1∑
l=1

(
δm1...ml

Ln
) ∗

k∑
j=l+1

�
(
Pml+1...mj

)
�0 ∗ r

(
Pmj+1...mk

◦ α
)
�0

= −Ln ∗ δ′′
m1...mk

r(α)�0 − (
δm1...mk

Ln
) ∗ r(α)�0

−
k−1∑
l=1

(
δm1...ml

Ln
) ∗ (

r
(
Pml+1...mk

◦ α
)

+
k∑

j=l+1

�
(
Pml+1...mj

)
� r

(
Pmj+1...mk

◦ α
))

�0

= −Ln ∗ δ′′
m1...mk

r(α)�0 − (
δm1...mk

Ln
) ∗ r(α)�0

−
k−1∑
l=1

(
δm1...ml

Ln
) ∗ (

δ′′
ml+1...mk

r(α)
)
�0

= −
k∑

l=0

(
δm1...ml

Ln
) ∗ (

δ′′
ml+1...mk

r(α)
)
�0.

The proof of (6.33) is completed by inserting r(Pn ≺ α) = −Ln ∗ r(α)�0. The other identity
can be proved in a similar way. �

For the moment, let us simply write δ′ instead of δ′
m1...mk

. By iterative use of (6.32),
respectively (6.33), we find

δ′�
(
Pn1...nj

) = (−1)j−1
∑

(δ′
(1)L

n1)
←−
R ∗ · · · ∗ (δ′

(j−1)L
nj−1)

←−
R ∗ (δ′

(j)L
nj )

δ′′r
(
Pn1...nj

) = (−1)j−1
∑

(δ(1)L
n1) ∗ −→

R (δ′′
(2)L

n2) ∗ · · · ∗ −→
R (δ′′

(j)L
nj )

using the projection operators defined in proposition 6.1 and a Sweedler notation. According
to lemma 6.6 we may drop the primes on the right-hand sides of these equations. Using the
generalized derivation property of δm1...mk

, we obtain

δ′�
(
Pn1...nj

) = δ�
(
Pn1...nj

)
δ′′r

(
Pn1...nj

) = δr
(
Pn1...nj

)
.

Since the elements Pn1...nj
span A(P ), this proves proposition 6.2.

6.3. Commutativity of the generalized derivations

Lemma 6.8.

�
(
Pm1...mk

◦ α
) = δm1...mk

�(α) +
k−1∑
j=0

δm1...mj
�(α) � �

(
Pmj+1...mk

)
. (6.34)

Proof. By induction. For k = 1 this follows directly from (6.27) using r(Pm) = �(Pm). Let
us fix k and assume that (6.34) holds for 1 � k′ � k. Starting with (6.27), we obtain

�
(
Pm1...mk+1 ◦ α

) − δm1...mk+1�(α) =
k∑

j=0

�
(
Pm1...mj

◦ α
)

� r
(
Pmj+1...mk+1

)

=
k∑

j=0

δm1...mj
�(α) � r

(
Pmj+1...mk+1

)
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+
k∑

j=0

j−1∑
l=0

δm1...ml
�(α) � �

(
Pml+1...mj

)
� r

(
Pmj+1...mk+1

)

=
k∑

j=0

δm1...mj
�(α) � r

(
Pmj+1...mk+1

)

+
k−1∑
l=0

δm1...ml
�(α) �

k∑
j=l+1

�
(
Pml+1...mj

)
� r

(
Pmj+1...mk+1

)

=
k∑

j=0

δm1...mj
�(α) � r

(
Pmj+1...mk+1

)

+
k−1∑
l=0

δm1...ml
�(α) �

(
�
(
Pml+1...mk+1

) − r
(
Pml+1...mk+1

))

= δm1...mk
�(α) � r

(
Pmk+1

)
+

k−1∑
j=0

δm1...mj
�(α) � �

(
Pmj+1...mk+1

)

=
k∑

j=0

δm1...mj
�(α) � �

(
Pmj+1...mk+1

)
.

Hence (6.34) also holds for k + 1. �

Proposition 6.3.

δm1...mk
(�(α) � r(β)) =

k∑
j=0

�
(
Pm1...mj

◦ α
)

� r
(
Pmj+1...mk

◦ β
)
. (6.35)

Proof. With the help of (6.34), we find
k∑

j=0

�
(
Pm1...mj

◦ α
)

� r
(
Pmj+1...mk

◦ β
)

=
k∑

j=0

δm1...mj
�(α) � r

(
Pmj+1...mk

◦ β
)

+
k∑

j=1

j−1∑
l=0

δm1...ml
�(α) � �

(
Pml+1...mj

)
� r

(
Pmj+1...mk

◦ β
)

=
k∑

j=0

δm1...mj
�(α) � r

(
Pmj+1...mk

◦ β
)

+
k−1∑
l=0

δm1...ml
�(α) �

k∑
j=l+1

�
(
Pml+1...mj

)
� r

(
Pmj+1...mk

◦ β
)

=
k−1∑
l=0

δm1...ml
�(α) �


r

(
Pmj+1...mk

◦ β
)

+
k∑

j=l+1

�
(
Pml+1...mj

)
� r

(
Pmj+1...mk

◦ β
)

+ δm1...mk
�(α) � r(β)
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=
k−1∑
l=0

δm1...ml
�(α) � δmj+1...mk

r(β) + δm1...mk
�(α) � r(β)

=
k∑

l=0

δm1...ml
�(α) � δmj+1...mk

r(β).

This equals δm1...mk
(�(α) � r(β)) by use of the generalized derivation rule (6.8). �

Theorem 6.1. [
δm1...mk

, δn1...nl

] = 0. (6.36)

Proof. Using (6.28), we obtain

δm1...mk
δn1...nl

r(α) = r
(
Pm1...mk

◦ Pn1...nl
◦ α

)
+

k∑
j=1

�
(
Pm1...mj

)
� r

(
Pmj+1...mk

◦ Pn1...nl
◦ α

)

+
l∑

j=1

δm1...mk

(
�
(
Pn1...nj

)
� r

(
Pnj+1...nl

◦ α
))

where, according to (6.35),

δm1...mk

(
�
(
Pn1...nj

)
� r

(
Pnj+1...nl

◦ α
))

=
k∑

p=0

�
(
Pm1...mp

◦ Pn1...nj

)
� r

(
Pmp+1...mk

◦ Pnj+1...nl
◦ α

)

=
k∑

p=1

�
(
Pm1...mp

◦ Pn1...nj

)
� r

(
Pmp+1...mk

◦ Pnj+1...nl
◦ α

)
+ �

(
Pn1...nj

)
� r

(
Pm1...mk

◦ Pnj+1...nl
◦ α

)
.

The commutativity of the ◦ product now implies that
[
δm1...mk

, δn1...nl

] = 0 on r(A(P )). A
similar argument shows that this also holds on �(A(P )). The generalized derivation property
(6.8) extends this commutation relation to the algebra generated by �(A(P )) ∪ r(A(P )) and
∂−1, taking (6.26) into account (and using the product ∗ and the projection ( )�0). But this
reaches the whole of R. �

6.4. Taking the residue

In this subsection we explore the properties of the map � defined in (6.9). According to (6.18)
and (6.2) we also have �(α) = res(r(α)). An immediate consequence of (6.10) is

�(Pn) = res(Ln) (6.37)

and from definition (6.5) we get

�
(
Pm1...mk

) = res(Lm1,...,mk ). (6.38)

Proposition 6.4.

�(α ≺ β) = −res(�(α) ∗ r(β)�0) (6.39)

�(α 
 β) = res(�(α) ∗ r(β)<0). (6.40)
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Proof. For β ∈ A1(P ), it is sufficient to consider

res(�(α ≺ Pn)) = −res(�(α)<0 ∗ r(Pn)) = −res(�(α) ∗ r(Pn)�0)

by use of (6.10) and (6.11). Let us assume that (6.39) holds for β ∈ A(P ) of degree � n, and
for all α ∈ A(P ). Then (6.39) also holds for β ∈ A(P ) of degree n + 1 since

res(�(α ≺ (Pm ≺ β))) = res(�((α ≺ Pm) ≺ β)) = −res(�(α ≺ Pm) ∗ r(β)�0)

= res(�(α)<0 ∗ Lm ∗ r(β)�0) = −res(�(α)<0 ∗ r(Pm ≺ β))

= −res(�(α) ∗ r(Pm ≺ β)�0).

The proof of the second relation proceeds in the same way. �

Theorem 6.2. � has the following homomorphism property:

�(α ×̂β) = �(α) ∗ �(β). (6.41)

Proof.

�(α ×̂β) = −�(α ≺ P 
 β) = res(�(α)<0 ∗ L ∗ r(β)<0)

= res(�(α)<0 ∗ ∂r(β)<0) = res(�(α)) ∗ res(r(β)). �

Lemma 6.9.

δm1...mk
res X = res δm1...mk

X ∀X ∈ R. (6.42)

Proof. Using the identity res X = (X<0∂)�0 and writing simply δ for δm1...mk
, we have

δ res X = δ(X<0∂)�0 = (δ(X<0∂))�0 = ((δX<0)∂)�0 = ((δX)<0∂)�0 = res δX

where we used (6.7), (6.8) and (6.25). �

Proposition 6.5.

δm1...mk
�(α) = �

(
Pm1...mk

◦ α
)
. (6.43)

Proof. Taking the residue of (6.28) and using (6.2), leads to

δm1...mk
�(α) = res

(
δm1...mk

r(α)
) = res r

(
Pm1...mk

◦ α
) = �

(
Pm1...mk

◦ α
)

�

7. Back to the (x)ncKP hierarchy

The formalism developed in the preceding section will now be applied to recover properties
of the ncKP and xncKP hierarchies from certain sets of algebraic identities in A(P ).

7.1. The ncKP hierarchy

Since according to theorem 6.1 the δn, n ∈ N, are commuting derivations, we may set δn = ∂tn

on R. The equations

Ltn = δnL n = 1, 2, . . . (7.1)

are then compatible. These are the defining relations (1.3) of the ncKP hierarchy. An
immediate consequence is

�(Pn) = ∂tnφ (7.2)
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which is (1.5). Furthermore, proposition 6.5 leads to �(Pn ◦ α) = ∂tn�(α). In the following,
the fundamental homomorphism property �(α ×̂ β) = �(α) ∗ �(β) (theorem 6.2) will also
play an important role. Applying �, for example, to the identity (4.24), results in the ncKP
equation (1.6).

Let us recall the definitions

(Ln)<0 = −
∞∑

m=1

σ (n)
m ∗ L−m =

∞∑
m=1

L−m ∗ η(n)
m (7.3)

of coefficients σ (n)
m and η(n)

m from [6], where iteration formulae for the (x)ncKP hierarchy
equations were derived in terms of them. The σ -coefficients frequently appeared in treatments
of the ‘commutative’ KP hierarchy (see [43], for example).

Theorem 7.1.

�(Un) = un �
(
C(m)

n

) = σ (m)
n �

(
H(m)

n

) = η(m)
n (7.4)

with Un,C
(m)
n ,H (m)

n defined in section 4.1.

Proof. Using (6.28), (6.1) and δ1 = [∂, ·], we obtain

r(P ◦ α)�0 = (δ1r(α) − L � r(α))�0 = (∂r(α) − r(α)∂ − ∂r(α)�0)�0.

Since [∂,X<0]�0 = 0 for all X ∈ R, this implies r(P ◦ α)�0 = −r(α)�0∂ which can be
applied iteratively to the expression

r(Un) = (−1)nr(P ≺ P ◦(n−2)) = −(−1)nL ∗ r(P ◦ P ◦(n−3))�0

to yield �(Un) = res(r(Un)) = res(L∂n−2) = un.
With the help of (6.39) and (6.4), the second relation of the theorem is obtained as follows,

�
(
C(m)

n

) = (−1)n res(�(Pm ≺ P ≺n−1)) = (−1)n+1 res(�(Pm)<0 ∗ r(P ≺n−1))

= (−1)n
∞∑

k=1

σ
(m)
k ∗ res(L−k ∗ r(P ≺n−1))

= (−1)n+1
∞∑

k=1

σ
(m)
k ∗ res(L−k+1 ∗ r(P ≺n−2)�0)

= (−1)n+1
∞∑

k=1

σ
(m)
k ∗ res((L−k+1)<0 ∗ r(P ≺n−2))

= (−1)n+1
∞∑

k=2

σ
(m)
k ∗ res(L−k+1 ∗ r(P ≺n−2)) = · · ·

=
∞∑

k=n−1

σ
(m)
k ∗ res(Ln−2−k ∗ r(P )) =

∞∑
k=n

σ
(m)
k ∗ res(Ln−1−k) = σ (m)

n

since res(L−l) = 1 if l = 1 and res(L−l) = 0 if l > 1. The last relation of the theorem is
verified in a similar way (see also the proof of theorem 8.1). �

By application of the above results, making use of theorem 6.2 and proposition 6.5, �

maps the identity (4.23) to

∂tm∂tnφ = σ
(n)
m+1 + η

(n)
m+1 +

m−1∑
r=1

(
σ

(n)
m−r ∗ ∂tr φ + ∂tr φ ∗ η

(n)
m−r

)
(7.5)
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which is (5.31) in [6]. Via (the image under � of) algebraic relations obtained in section 4.1
this equation determines iteratively a ‘complete’ set of ncKP hierarchy equations in the sense
that any equation for φ which arises from the hierarchy can be expressed as a combination of
such equations27. Hence, the ncKP hierarchy lies in the image of a set of identities in A(P )

under the map �. According to results in section 4.1, we know that the respective set of
identities in A(P ) can be built from Pm,m ∈ N, solely by use of the products ◦ and ×̂. We
expect that also the following statement holds.

Conjecture. All identities in A(P ), which are built from Pm,m ∈ N, only with the help of the
products ◦ and ×̂, are mapped by � to ncKP equations (expressed in terms of the potential φ).

If there were such an identity which is not mapped by � to an ncKP equation, we know that
it would be mapped to an interesting equation since the latter would be solvable via the ansatz
described in the introduction and thus admit multiple ‘soliton’ solutions. We believe, however,
that the ncKP hierarchy exhausts the corresponding possibilities (under the restrictions stated
in the conjecture).

7.2. Extension of the Moyal-deformed ncKP hierarchy

According to (6.43),

ϑmn := 1
2 (δmn − δnm) (7.6)

satisfies

�(Amn ◦ α) = ϑmn�(α) (7.7)

with Amn defined in (4.19), and (6.8) leads to

ϑmn(X ∗ Y ) = (ϑmnX) ∗ Y + X ∗ ϑmnY + 1
2 (δmX ∗ δnY − δnX ∗ δmY ) (7.8)

which allows us to set ϑmn = ∂θmn
on R (where ∂θmn

is the partial derivative with respect
to the deformation parameter θmn entering the Moyal ∗-product (1.16)), provided that also
δn is set equal to ∂tn (which yields the ncKP hierarchy). Since, according to theorem 6.1,
ϑmn,m, n ∈ N, commute with each other and also with δn, n ∈ N, the equations

Lθmn
= ϑmnL (7.9)

are compatible and extend the Moyal-deformed ncKP hierarchy28. In this way, one recovers
the extension of the Moyal-deformed ncKP hierarchy obtained in [5] and further explored
in [6].

From (6.23) we obtain

δmnL
r = [(Lm,n)�0, L

r ] − (δmLr) ∗ (Ln)�0 (7.10)

and therefore

ϑmnL
r = [W(m,n), Lr ]∗ + 1

2 (δnL
r ∗ (Lm)�0 − δmLr ∗ (Ln)�0) (7.11)

with

W(m,n) := 1
2 (Lm,n − Ln,m)�0 = 1

2 ((Ln)<0 ∗ Lm − (Lm)<0 ∗ Ln)�0 (7.12)

using Lm,n = −(Lm)<0 ∗ Ln in the last step.

27 With the choice m = 1, after an x-integration the last equation can be solved for φtn if n > 2 [6].
28 The xncKP flow given by (7.9) for fixed m, n only commutes with the corresponding flow of the same equation with
m, n replaced by another pair r, s of natural numbers, if the ncKP equations associated with the evolution parameters
tm, tn, tr , ts are satisfied (see also [6]). The proof of theorem 6.1 clearly manifests this dependence of ‘second-order’
flows on those of ‘first order’.
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Replacing ϑmn by ∂θmn
in (7.11) for r = 1, taking the residue and performing an

x-integration, leads to

∂θmn
φ = 1

2 res(Lm,n − Ln,m) = �(Amn). (7.13)

By application of � to identities in A(P ) involving besides Pm also Amn, and otherwise
built with the products ◦ and ×̂ only, we obtain explicit xncKP equations beyond those of the
ncKP hierarchy. In fact, applying � to (4.22), we reach all those equations, since we recover
(5.30) in [6]. Recalling results of section 4.1, this proves that there is a set of identities in
A(P ), which can be expressed solely in terms of Pm,Amn,m, n ∈ N, and the products ◦ and
×̂, such that � maps it to a complete set of xncKP equations for the potential φ. Probably all
identities built in this way are mapped by � to xncKP equations.

Remark. It is well known (see [44], for example) that by means of an equivalence
transformation

f ∗′ g = D−1((Df ) ∗ (Dg)) (7.14)

with an invertible operator D one can eliminate a possible symmetric part of the deformation
parameters θmn from the ∗-product. Let us see how the algebra A(P ) reflects this fact. For
the moment, let us generalize θmn to tmn by adding a symmetric part. From the definition of
the main product ◦, we have the identity

Pmn + Pnm = Pm ◦ Pn − Pm+n (7.15)

in A(P ). This is mapped by � to the linear equation

φtmn
+ φtnm

= φtmtn − φtm+n
(7.16)

which is equivalent to

φtmn
= φθmn

+ 1
2

(
φtmtn − φtm+n

)
(7.17)

and allows us to express the partial derivative with respect to the symmetric part of tmn

in terms of partial derivatives with respect to the variables tn. We may therefore restrict
our considerations to the antisymmetric combination Amn = (Pmn − Pnm)/2 and thus the
antisymmetric part θmn of tmn.

8. Beyond Moyal deformation: XncKP hierarchy

In this section, we replace the Moyal product by an associative ∗-product which may be
regarded as including all (at least in the present framework) possible deformations. This leads
us to an extension of the ncKP hierarchy which is even bigger than the xncKP hierarchy.

8.1. Maximal deformation ∗-product

Now we allow the coefficients of L to depend on variables t(r) = {
tm1...mr

∣∣m1, . . . , mr =
1, 2, . . .

}
, r = 1, 2, . . . . In the following we write ∗ for the n → ∞ limit of the associative

product ∗n defined in appendix C (where xµ1...µr has to be replaced by tm1...mr
). Then (C.2)

reads

(f ∗ g)tm1 ...mr
= ftm1 ...mr

∗ g + f ∗ gtm1 ...mr
+

r−1∑
k=1

ftm1 ...mk
∗ gtmk+1 ...mr

(8.1)
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and the first of these differentiation rules are

(f ∗ g)tm = ftm ∗ g + f ∗ gtm

(f ∗ g)tmn
= ftmn

∗ g + f ∗ gtmn
+ ftm ∗ gtn

(f ∗ g)tmnr
= ftmnr

∗ g + f ∗ gtmnr
+ ftm ∗ gtnr

+ ftmn
∗ gtr .

Applying them repeatedly, we find, e.g.,

(f ∗ g ∗ h)tmnr
= ftmnr

∗ g ∗ h + f ∗ gtmnr
∗ h + f ∗ g ∗ htmnr

+ ftmn
∗ gtr ∗ h + ftmn

∗ g ∗ htr + ftm ∗ gtnr
∗ h + ftm ∗ g ∗ htnr

+ f ∗ gtmn
∗ htr + f ∗ gtm ∗ htnr

+ ftm ∗ gtn ∗ htr . (8.2)

For ξi = ∑∞
m=1 tmpm

i with parameters pi we obtain, for example,

eξ1 ∗ eξ2 ∗ eξ3 = eξ1+ξ2+ξ3+ξ12+ξ13+ξ23+ξ123 (8.3)

where

ξi1...ir :=
∞∑

m1,...,mr=1

tm1...mr
p

m1
i1

. . . p
mr

ir
. (8.4)

More generally,

eξ1 ∗ · · · ∗ eξN = exp


 N∑

r=1

∑
1�i1<···<ir�N

ξi1...ir


 (8.5)

which implies

(eξ1 ∗ · · · ∗ eξN )tm1 ...mr
=


 ∑

1�i1<···<ir�N

p
m1
i1

. . . p
mr

ir


 eξ1 ∗ · · · ∗ eξN

= �N

(
Pm1 ≺ · · · ≺ Pmr

)
eξ1 ∗ · · · ∗ eξN (8.6)

using (3.8) in the last step.

8.2. The XncKP hierarchy

Comparing the generalized derivation rule (6.8) with (8.1) and recalling theorem 6.1, it is
consistent to set ∂tm1 ...mr

= δm1...mr
on R. Then (6.22), respectively (6.23), leads to

∂tm1 ...mr
Ln = −[

Lm1,...,mr
<0, L

n
]
∗ +

r−1∑
k=1

(
∂tm1 ...mk

Ln
) ∗ Lmk+1,...,mr

<0

= [
Lm1,...,mr �0, L

n
]
∗ −

r−1∑
k=1

(
∂tm1 ...mk

Ln
) ∗ Lmk+1,...,mr �0 (8.7)

where Lm1,...,mr is given by (6.15) in terms of L. For n = 1, these are the generalized Lax
equations

Ltm1 ...mr
= [

Lm1,...,mr �0, L
] −

r−1∑
k=1

Ltm1 ...mk
∗ Lmk+1,...,mr �0

= −[
Lm1,...,mr

<0, L
]
∗ +

r−1∑
k=1

Ltm1 ...mk
∗ Lmk+1,...,mr

<0 (8.8)
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which (as a consequence of theorem 6.1) define a hierarchy of commuting flows which we call
the XncKP hierarchy. It is easy to see that they are the integrability conditions of the linear
system

L ∗ ψ = λψ ψtm1 ...mr
= Lm1,...,mr �0 ∗ ψ. (8.9)

Taking the residue of (8.8), after an x-integration we find

φtm1 ...mr
= res(Lm1,...,mr ) = �

(
Pm1...mr

)
. (8.10)

Introducing coefficients σ
(m1,...,mr )
k via

Lm1,...,mr
<0 = (−1)r

∞∑
k=1

σ
(m1,...,mr )
k ∗ L−k (8.11)

(8.10) takes the form

φtm1 ...mr
= (−1)rσ

(m1,...,mr )
1 . (8.12)

With the help of Lm1,...,mr+1 = −Lm1,...,mr
<0 ∗ Lmr+1 one obtains the iteration formula

σ
(m1,...,mr+1)
k = σ

(m1,...,mr )
k+mr+1

−
mr+1−1∑

l=1

σ
(m1,...,mr )
l ∗ σ

(mr+1−l)
k (8.13)

which corresponds to the identity (4.18) in A(P ). The coefficients σ
(m)
k already appeared in

section 7.1 (see also (5.7) and (5.8) in [6]). An example from the set of equations (8.12) is

φt1,2,1 = −σ
(1,2,1)
1 = −σ

(1,2)
2 = −σ

(1)
4 + σ

(1)
1 ∗ σ

(1)
2

= 1
4φt4 − 1

3φt1t3 − 1
8φt2t2 + 1

4φt1t1t2 − 1
24φt1t1t1t1 + 1

2φt1 ∗ (
φt2 − φt1t1

)
. (8.14)

In a similar way, defining η-coefficients via

r
(
Pmr


 · · · 
 Pm1

)
<0 =

∞∑
k=1

L−k ∗ η
(m1,...,mr )
k (8.15)

one obtains the expression

η
(m1,...,mr+1)
k = η

(m1,...,mr )
k+mr+1

+
mr+1−1∑

l=1

η
(mr+1−l)
k ∗ η

(m1,...,mr )
l (8.16)

which corresponds to the identity (4.15) in A(P ). In fact, (8.13) and the last relation follow
directly from the corresponding relations in A(P ) by use of the following result.

Theorem 8.1.

�
(
H

(m1,...,mr )
k

) = η
(m1,...,mr )
k �

(
C

(m1,...,mr )
k

) = σ
(m1,...,mr )
k . (8.17)

Proof. With the help of (6.40) and (6.3), we obtain

�
(
H

(m1,...,mr )
k

) = �
(
Hk−1 
 Pmr


 · · · 
 Pm1

) = res
(
�(Hk−1) ∗ r

(
Pmr


 · · · 
 Pm1

)
<0

)
=

∞∑
l=1

res(�(P 
k−1) ∗ L−l ) ∗ η
(m1,...,mr )
l

=
∞∑
l=1

res(�(P 
k−2)�0 ∗ L1−l ) ∗ η
(m1,...,mr )
l

=
∞∑
l=1

res(�(P 
k−2) ∗ (L1−l )<0) ∗ η
(m1,...,mr )
l
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=
∞∑
l=2

res(�(P 
k−2) ∗ L1−l ) ∗ η
(m1,...,mr )
l = · · ·

=
∞∑

l=k−1

res(�(P ) ∗ Lk−2−l ) ∗ η
(m1,...,mr )
l =

∞∑
l=k

res(Lk−1−l ) ∗ η
(m1,...,mr )
l .

The second relation of the theorem is verified in a similar way. �

Explicit equations of the XncKP hierarchy are more generally obtained by application of
� to identities in A(P ) built from any subset of the elements Pm1...mk

and the products ◦ and
×̂ (using (8.10), theorem 6.2 and proposition 6.5).

There is a redundancy in the parameters tm1...mk
. The remark at the end of section 7.2,

which also applies to the more general ∗-product under consideration, shows that we may
drop the symmetric part of tmn. But now there are further identities in A(P ) which lead to
linear equations for φ and allow us to eliminate partial derivatives of φ with respect to certain
combinations of the variables tm1...mk

for fixed k. For example, with the help of (2.12), (2.7)
and (7.15), we obtain

Pm ◦ Pn ◦ Pr = Pmnr + Pmrn + Pnrm + Pnmr + Prmn + Prnm

+ Pm ◦ Pn+r + Pn ◦ Pm+r + Pr ◦ Pm+n − 2Pm+n+r (8.18)

which is mapped by � to

φtmnr
+ φtmrn

+ φtnrm
+ φtnmr

+ φtrmn
+ φtrnm

= φtmtntr − φtmtn+r
− φtntm+r

− φtr tm+n
+ 2φtm+n+r

(8.19)

as a consequence of which the totally symmetric part of tmnr turns out to be redundant. In
particular, the last equation implies

φtmmm
= 1

6φtmtmtm − 1
2φtmt2m

+ 1
3φt3m

. (8.20)

A similar calculation yields

Pmnr − Pmrn + Pnrm + Pnmr − Prmn − Prnm = 2(Pm ◦ Anr − An,m+r + Ar,m+n) (8.21)

and anti-symmetrization with respect to m, n, r leads to

Pmnr − Pmrn + Pnrm − Pnmr + Prmn − Prnm = 2(Pm ◦ Anr + Pn ◦ Arm + Pr ◦ Amn) (8.22)

so that, in particular, the totally antisymmetric part of tmnr is redundant. Of course, (8.21)
determines further redundancies. These are given by

Pmmr − Prmm = Pm ◦ Amr − Am,m+r + Ar,2m r �= m (8.23)

and additional relations with m, n, r pairwise different.
Let us look at some concrete examples. Application of � to the identity

P1,1,1 + P1,2 + P ×̂P = P ≺ P ≺ P + P ≺ P2 + P ×̂ P = 0 (8.24)

leads to the nonlinear XncKP equation

φt1,1,1 + φt1,2 + φt1 ∗ φt1 = 0. (8.25)

By use of the linear equation (8.20) this becomes
1
3φt3 − 1

2φt1t2 + 1
6φt1t1t1 + φt1,2 + φt1 ∗ φt1 = 0 (8.26)

which, with the help of the linear equation (7.17), is turned into an xncKP equation,

φθ1,2 − 1
6

(
φt3 − φt1t1t1

)
+ φt1 ∗ φt1 = 0. (8.27)

Of course, this equation is obtained more directly from the identity

A1,2 − 1
6 (P3 − P ◦3) + P ×̂P = 0. (8.28)
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Furthermore, the identity

P1,2,1 = P ≺ P2 ≺ P = P ≺ P 
 P ≺ P − P ≺ P ≺ P ≺ P = −P ×̂P ≺2 − P ≺4 (8.29)

leads to the nonlinear XncKP equation

φt1,2,1 = −φt1 ∗ φt1,1 − φt1,1,1,1 (8.30)

where we should substitute the following expressions (obtained from (4.36), for example),

φt1,1 = − 1
2φt2 + 1

2φt1t1 (8.31)

φt1,1,1,1 = − 1
4φt4 + 1

3φt1t3 + 1
8φt2t2 − 1

4φt1t1t2 + 1
24φt1t1t1t1 (8.32)

which results in (8.14). Expressions for φt1,1,2 and φt2,1,1 are then obtained with the help of
linear equations given above. We may take the view, however, that the dependence of φ on
t1,1,2, respectively t2,1,1, is redundant (after selection of the variable t1,2,1).

8.3. Reductions

Let us impose the constraint (LN)<0 = 0 for some fixed N ∈ N which is known to reduce
the KP hierarchy to the Nth Gelfand–Dickey hierarchy (see [3], for example). It immediately
follows from (8.7) that all equations of the XncKP hierarchy preserve this constraint. Another
immediate consequence is (LkN)<0 = 0 and thus LtkN

= 0 for all k ∈ N. Moreover, (6.15)
shows that

LkN,m2,...,mr = 0 k � 1, r � 2 (8.33)

which, by use of (8.8), implies

LtkN,m2 ...mr
= 0 k � 1, r � 2. (8.34)

Furthermore,

Lm1,...,mr ,kN
<0 = ((

Lm1,...,mr−1
<0 ∗ Lmr

)
<0 ∗ LkN

)
<0

= (
Lm1,...,mr−1

<0 ∗ Lmr ∗ LkN
)
<0 − ((

Lm1,...,mr−1
<0 ∗ Lmr

)
�0 ∗ (LkN)�0

)
<0

= −Lm1,...,mr +kN
<0 k � 1, r � 1 (8.35)

by use of (6.11). With the help of (8.8), this leads to

Ltm1 ...mr ,kN
= −Ltm1 ...mr +kN

k � 1, r � 1. (8.36)

Moreover, using (6.15) and (8.35), we obtain

Lm1,...,ml−1,kN,ml+1,...,mr = −Lm1,...,ml−1+kN,ml+1,...,mr l = 2, . . . , r − 1, r � 3, k � 1

(8.37)

and thus

Ltm1 ...ml−1,kN,ml+1 ...mr
= −Ltm1 ...,ml−1+kN,ml+1 ...mr

l = 2, . . . , r − 1, r � 3, k � 1. (8.38)

As an example, let us consider the KdV reduction (L2)<0 = 0. In this case we have
φt2 = 0 and φt1,2 = −φt3 , so that (8.26) reduces to

φt3 = 1
4φt1t1t1 + 3

2φt1 ∗ φt1 (8.39)

which is the potential ncKdV equation. Furthermore, (8.14) reduces to

φt3,1 = −φt1,2,1 = 1
3φt1t3 + 1

24φt1t1t1t1 + 1
2φt1 ∗ φt1t1 (8.40)

and (8.23) leads to the linear equation

φt1,3 = −φt1,1,2 = φθ1,3 + 1
2φt1t3 (8.41)

with the help of which, and use of (8.39), the previous equation yields the xncKdV equation

φθ1,3 + 1
4

[
φt1 , φt1t1

] = 0. (8.42)
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8.4. Generalized Sato–Wilson equations and Birkhoff factorization

The ncKP hierarchy can be formulated alternatively in terms of the Sato–Wilson equations

Wtm = −(Lm)<0 ∗ W (8.43)

with (the dressing operator)

W = 1 +
∞∑

n=1

wn∂
−n. (8.44)

Since t1 = x and L�0 = ∂ , the case m = 1 leads to Wx = −L<0 ∗ W = ∂W − L ∗ W . Hence
L ∗ W = W∂ or L = W ∗ ∂W−1, since W is invertible. The Sato–Wilson equations now take
the form

Wtm = −(W ∗ ∂mW−1)<0 ∗ W. (8.45)

These equations imply the Lax form (1.3) of the ncKP equations (see also [6]).
An obvious generalization of the above Sato–Wilson equations is given by

Wtm1 ...mr
= −Lm1,...,mr

<0 ∗ W. (8.46)

They indeed imply the generalized Lax equations (8.8), as can be demonstrated by application
of ∂tm1 ...mr

to L ∗ W = W∂ . From (8.46) we find

Wtm1 ...mr
∗ W−1 = −Lm1,...,mr

<0 = (
Lm1,...,mr−1

<0 ∗ Lmr
)
<0

= (
Lm1,...,mr−1

<0 ∗ W ∗ ∂mr W−1
)
<0

= −(
Wtm1 ...mr−1

∗ ∂mr W−1
)
<0

and thus the equivalent inductive form

Wtm1 ...mr
= −(

Wtm1 ...mr−1
∗ ∂mr W−1)

<0 ∗ W. (8.47)

This can be rewritten as

Wtm1 ...mr
= (

Wtm1 ...mr−1
∗ ∂mr W−1

)
�0 ∗ W − Wtm1 ...mr−1

∂mr (8.48)

and thus

(W ∗ eξ̂ )tm1 ...mr
= Lm1,...,mr �0 ∗ (W ∗ eξ̂ ) (8.49)

where ξ̂ = ∑
n�1 tn∂

n. Following [45] (see also [7, 46]), this leads to the Birkhoff factorization
(generalized Riemann–Hilbert problem, see [25, 47] for example)

W(t) ∗ eξ̂ (t) = Y (t) ∗ W(0) (8.50)

with Y = Y�0. This is equivalent to

eξ̂W(0)−1 = W(t)−1 ∗ Y (t) (8.51)

since W(t) ∈ G− and Y (t) ∈ G+, for the group G = G−G+ of �DOs.
Conversely, acting with ∂tm1 ...mr

on (8.50), we get(
W(t)tm1 ...mr

+ W(t)tm1 ...mr−1
∂mr

) ∗ eξ̂ (t) = Y (t)tm1 ...mr
∗ Y (t)−1 ∗ W(t) ∗ eξ̂ (t) (8.52)

and thus

W(t)tm1 ...mr
∗ W(t)−1 + W(t)tm1 ...mr−1

∗ ∂mr W(t)−1 = Y (t)tm1 ...mr
∗ Y (t)−1. (8.53)

Taking the R<0 part, noting that
(
Y (t)tm1 ...mr

∗ Y (t)−1
)
<0 = 0 and W(t)tm1 ...mr

∗ W(t)−1 =(
W(t)tm1 ...mr

∗ W(t)−1
)
<0, one recovers (8.47). Hence, the Birkhoff factorization (8.50) is

equivalent to the XncKP hierarchy equations (8.8). Via (8.50) the space of solutions of the
XncKP hierarchy is determined from the same initial data W(0) as in the KP case [46].
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9. Conclusions

Some crucial steps in this work are sketched in the following diagram.

A(P )
�

–−→ A(P/Q)

|
�|↓

||�N↓
XncKP

trace method
———−→ algebraic sum

identities

Our central object is the algebra A(P ) generated by a single element P and supplied with
certain associative products, which in particular give rise to a (mixable) shuffle product (and a
Rota–Baxter algebra structure). The map � embeds it into a corresponding algebra generated
by two independent commuting elements P,Q. Identities in A(P ) are then mapped by �

to identities in the latter algebra. These in turn are sent by �N to algebraic sum identities in
variables pn, qn, n = 1, . . . , N . Since N ∈ N is arbitrary, this results in families of identities.
Such identities were actually the starting point of this work. In the introduction we explained
how algebraic identities of this kind emerge from the equations of the (nc)KP hierarchy via the
‘trace method’ [8]. It remained to find those families of identities in A(P ) which correspond
to KP equations. This is where the map � entered the stage. We found identities in A(P )

which are mapped by � to KP equations and the whole hierarchy of KP equations expressed
in the potential φ is recovered in this way (after setting the derivations δn equal to partial
derivatives ∂tn ).

Moreover, we found further families of identities and showed that these determine
extensions of the ncKP hierarchy with deformed products. The xncKP hierarchy [5, 6] is
rediscovered in this way. But we even discovered a new (XncKP) hierarchy which extends
the xncKP hierarchy after deforming the product in a more general way.

The XncKP hierarchy contains linear equations and it seems that their existence is related
to equivalence transformations of the ∗-product, which can be used to reduce the amount of
deformation parameters (which correspond to evolution ‘times’ of the generalized hierarchy).
This relation has not been sufficiently clarified in this work.

The fact that (R, ( )�0) (and also (R, ( )<0)) is a Rota–Baxter algebra (see appendix A)
suggests generalizing the results of section 6 towards other Rota–Baxter algebras29.

The correspondence between (X)ncKP equations and algebraic identities presented in this
work sets up a bridge between different areas of mathematics. In view of the appearance of
the KP hierarchy in many physical systems and in various mathematical problems, this should
be an interesting new tool for further explorations. In particular, the KP hierarchy has deep
relations with string theory (see [48–50], for example) and shows up in related models such
as topological field theories [51–53] and matrix models [54, 55]. We should also mention
its appearance in Seiberg–Witten theory [56] and a relation with random matrices [57]. We
expect that deformations and extensions of the KP hierarchy will play a similar role and that
interesting generalizations of these results can be achieved. Indeed, some motivation to study
(Moyal-) deformations of the KP hierarchy originated from the following fact. In string theory,
D-branes with a non-vanishing B-field are effectively described in a low energy limit by a
Moyal-deformed Yang–Mills theory [58, 59]. Corresponding non-commutative instantons
[60] are solutions of a Moyal-deformed self-dual Yang–Mills equation, from which Moyal-
deformed soliton equations result by reductions, as in the classical case (see [61], for example).

29 We may e.g. replace R by an algebra of Laurent series in an indeterminate λ, as in the AKNS hierarchy example
[5, 7].
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Such deformed soliton equations provide us with interesting examples of non-commutative
field theories [60].

Within the framework of integrable systems our results suggest an apparently new method,
namely to look for (series of) algebraic identities of a certain type in order to construct
hierarchies of soliton equations. The XncKP hierarchy presented in this work was in fact
discovered in this way.
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Appendix A. Rota–Baxter operators

We recall the Rota–Baxter relation of weight30 q on a ring A:

R(a)R(b) = R(R(a)b + aR(b)) − qR(ab) (A.1)

(see [14–17, 62]). A (not exhaustive) class of Rota–Baxter operators is obtained by the
following construction [16, 62]. Given an endomorphism � : A → A of an algebra A, i.e.,
�(ab) = �(a)�(b) for all a, b ∈ A,

R :=
∑
r�1

�r (A.2)

(assuming convergence, or nilpotence for some power of �) defines a Rota–Baxter operator
of weight −1. Also note that id + R is then a Rota–Baxter operator of weight 1. An important
example, already presented by Baxter [14], is provided by the standard Baxter algebra
[15, 17] of a set of generators {a, b, c, . . .} which are infinite sequences a = (a1, a2, . . .),
with componentwise multiplication ab = (a1b1, a2b2, . . .) and the Rota–Baxter operator
given by

R(a1, a2, a3, . . .) = (0, a1, a1 + a2, a1 + a2 + a3, . . .) (A.3)

which is (3.10). This is of the above form with the shift operator �(a1, a2, . . .) :=
(0, a1, a2, . . .). The standard Baxter algebra is naturally isomorphic to the free Baxter algebra
on the same set of generators [15, 17]. The standard (or free) Baxter algebra with a single
generator is isomorphic to the algebra of symmetric functions [17]. Another example is
obtained by choosing (�f )(x) := f (qx) on functions of a variable x, where q is a parameter.
R is then the Jackson q-integral [17].

The following theorem [62] provides us with further examples and, in particular, shows
that (R, ∗, ( )�0) and (R, ∗, ( )<0) are Rota–Baxter algebras.

Theorem. Let (A, +, ·) be a (with respect to the product · not necessarily commutative and
not necessarily associative) ring. The following conditions are equivalent:

(i) There is a Rota–Baxter operator R of weight 1 on A which is a group homomorphism of
addition.

(ii) There are two subrings A± of A and a subring B of A+ × A− (supplied with a ring
structure in the obvious way by componentwise addition and multiplication) such that
each element a ∈ A has a unique decomposition a = a+ + a− with (a+, a−) ∈ B.

30 Via multiplication of the Rota–Baxter operator by q−1, we can always achieve that a non-vanishing weight constant
becomes equal to 1. In this sense, the weight constant is ‘relatively unimportant’ [16].
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An idempotent Rota–Baxter operator R of weight 1 is equivalent to a direct sum
decomposition, i.e., A = A+ ⊕ A−.

Proof. Let us assume that (i) holds. Define A+ := R(A) and A− := (id − R)(A). By
assumption, R(a) + R(b) = R(a + b). Furthermore, the Rota–Baxter relation R(a)R(b) =
R(R(a)b + aR(b) + ab) implies R(a)R(b) ∈ R(A) = A+, so that A+ is a subring. Moreover,
since id − R satisfies the same Rota–Baxter relation, A− is also a subring. This supplies
A+ × A− with a ring structure. Now

(R(a)R(b), (id − R)(a)(id − R)(b)) = (R(c), (id − R)(c))

with c := aR(b) + R(a)b − ab shows that there is a subring B of A+ × A− with the properties
specified in (ii).

Conversely, if (ii) holds, R(a) := a+ defines a homomorphism R with respect to the
operation + and we have a− = (id − R)(a). Now we compare the decomposition

aR(b) + R(a)b − ab = R(aR(b) + R(a)b − ab) + (id − R)(aR(b) + R(a)b − ab)

with the identity

aR(b) + R(a)b − ab = R(a)R(b) − (id − R)(a)(id − R)(b)

where, as a consequence of the subring properties, the first term on the right-hand side lies in
A+ and the second in A−. Since the decomposition of an element of A is unique, this implies

R(aR(b) + R(a)b − ab) = R(a)R(b)

which is the Rota–Baxter relation (of weight 1).
If R is idempotent, i.e., R2 = R, one easily verifies that A+ ∩ A− = {0}. Conversely, given

A = A+ ⊕ A−, the projections onto the subrings define idempotent Rota–Baxter operators.
�

The theorem also holds with ‘ring’ replaced by ‘K-algebra’ if R is K-linear. If one of the
conditions of the theorem is fulfilled, the classical R-matrix given by

R(a) := a+ − a− (A.4)

(which generalizes the Hilbert transform) satisfies

R(a)R(b) = R(R(a)b + aR(b)) − ab (A.5)

called the ‘Poincaré–Bertrand formula’ in [24] and the ‘modified Rota–Baxter relation’ in
[22, 23]. Passing over to commutators, this yields the modified Yang–Baxter equation [24].
The product � used in section 6 can be expressed as follows [24],

a � b = a+b+ − a−b− = 1
2 (R(a)b + aR(b)). (A.6)

In terms of the Rota–Baxter operator given by R(a) = a+, we have the following expression,

a � b = R(a)b + aR(b) − ab. (A.7)

Such a product, determined by a Rota–Baxter operator of weight 1, has been called ‘double
product’ in [38] (see also [22, 23]). It is associative as a consequence of the Rota–Baxter
relation.

We also refer to [28, 63–65] for explorations of Rota–Baxter algebras. In particular,
according to [66] any Rota–Baxter algebra defines a dendriform trialgebra (see [67], for
example)31.

31 Although the notation used in work on dendriform algebras looks similar to the notation used in section 2, one
should note that the operations defining a dendriform algebra are not associative whereas our products are associative.
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Appendix B. Some realizations of the algebra A

In this appendix we briefly describe some realizations of the algebraic structure introduced in
section 2, different from our main example of partial sum calculus in section 3.

Posets. A poset P is a set with a binary relation i � j for i, j ∈ P , such that

(i) for all i: i � i,
(ii) if i � j and j � i, then i = j ,

(iii) if i � j and j � k, then i � k.

Let us write i < j for i � j and i �= j . A finite non-empty subset {i1, . . . , in} of P will
be called a chain, if i1 < · · · < in. A chain I always has a smallest element min(I ) and a
greatest element max(I ) . The set C of chains of P is ‘graded’ with respect to the number
of elements of the chains. Let A be the free vector space generated by C over K with basis
vectors {eI |I ∈ C}. We define the algebraic structure as in the case of partial sums:

eI • eJ :=
{
eI∪J if max(I ) = min(J )

0 otherwise
(B.1)

eI ≺ eJ :=
{
eI∪J if max(I ) < min(J )

0 otherwise
(B.2)

and thus

eI 
 eJ =
{
eI∪J if max(I ) � min(J )

0 otherwise.
(B.3)

From these rules we find

eI ◦ eJ :=
{
eI∪J if I ∪ J ∈ C
0 otherwise.

(B.4)

For a finite poset P , we define a map � : A → K by �(eI ) = 1 for all I ∈ C. Then, for
Aa = ∑

i∈P aa,iei, a = 1, . . . , r , we obtain

�(A1 ◦ · · · ◦ Ar) =
∑

i1,...,ir∈P
c{i1,...,ir }a1,i1 · · · ar,ir (B.5)

with

c{i1,...,ir } :=
{

1 if {i1, . . . , ir} ∈ C
0 otherwise.

A special example of a poset is given by a rooted tree, which possesses a distinguished element,
the ‘root’, from which there is a unique path to any other element. The ordering of nodes
along a path obviously defines poset relations < and �. Then R(A) := ∑

n∈P
(∑

k<n ak

)
en,

where A = ∑
n∈P anen, defines a Rota–Baxter operator of weight −1 for the algebra (A1, •).

Hence, with any rooted tree a Rota–Baxter algebra, and thus also a dendriform trialgebra [66],
is associated.

The tensor product algebra of an associative algebra. Let (A1, •) be any associative algebra
over K, and Ar := A1 ⊗ · · · ⊗ A1 (r-fold tensor product over K). Then A = ⊕

r�1 Ar with
the tensor product ⊗ is an associative algebra. The product • extends to an associative product
in A by setting

(A1 ⊗ · · · ⊗ Ar) • (B1 ⊗ · · · ⊗ Bs) := A1 ⊗ · · · ⊗ (Ar • B1) ⊗ · · · ⊗ Bs (B.6)
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for all A1, . . . , Ar, B1, . . . , Bs ∈ A1. Let us now define a new associative product by

α 
 β = α ⊗ β + α • β ∀α, β ∈ A. (B.7)

Identifying ⊗ with ≺ in our general formalism, the main product ◦ becomes a ‘mixable shuffle
product’, as considered in [27].

If (A1, •) is unital with unit E, we can define an operator R : A → A by R(α) := E ⊗ α.
This implies R(α) • R(β) = R(α ⊗ β). The quasi-shuffle property leads to

R(α) ◦ R(β) = R(α ◦ R(β) + R(α) ◦ β + α ◦ β) (B.8)

so that R is a Rota–Baxter operator of weight −1. The algebra (A, ◦, R) is the free Rota–Baxter
algebra on A1 (of weight −1) [27]. The operator R satisfies

R(α) • R(β) + R2(α • β) = R(α • R(β) + R(α) • β) (B.9)

with respect to the •-product. This is the condition in [68] for the map R to be hereditary and
is called the associative Nijenhuis relation in [22, 23, 69, 70]. In fact, the following stronger
identity holds,

R(α • β) = R(α) • β. (B.10)

Appendix C. ∗n products

On the space of analytic functions (or formal power series) of the collection x =
(x(1), x(2), . . . , x(n)) of variables x(1) = {xµ}, x(2) = {xµν}, x(3) = {xµνρ}, . . . , x(n) =
{xµ1...µn} (where the indices run over some discrete set) we introduce a product ∗n via32

(f ∗n g)(x) := exp

(
n∑

r=1

xµ1...µr

r∑
k=0

∂

∂x
µ1...µk

1

∂

∂x
µk+1...µr

2

)
f (x1)g(x2)

∣∣∣∣∣
x1=x2=0

(C.1)

using the summation convention with respect to the indices µk . Obviously,

xµ1...µr ∗n xν1...νs = xµ1...µr xν1...νs + xµ1...µr ν1...νs

where the last term should be set to zero if the number of indices exceeds n. For n = 1 the
product ∗n coincides with the ordinary one since

(f ∗1 g)(x(1)) = exp

(
xµ

(
∂

∂x
µ

1

+
∂

∂x
µ

2

))
f (x1)g(x2)

∣∣∣∣
x1=x2=0

= f (x(1))g(x(1)).

For n = 2 we find

(f ∗2 g)(x(1), x(2)) = exp

(
xµ

(
∂

∂x
µ

1

+
∂

∂x
µ

2

)

+ xµν

(
∂

∂x
µν

1

+
∂

∂x
µν

2

+
∂

∂x
µ

1

∂

∂xν
2

) )
f

(
x

(1)
1 , x

(2)
1

)
g
(
x

(1)
2 , x

(2)
2

)∣∣∣∣∣
x1=x2=0

= exp

(
xµν ∂

∂x
µ

1

∂

∂xν
2

)
f

(
x(1) + x

(1)
1 , x(2)

)
g
(
x(1) + x

(1)
2 , x(2)

)∣∣∣∣
x1=x2=0

which is the usual Moyal product (if the symmetric part of xµν vanishes).

Proposition. The ∗n-product is associative.

32 Here and in the following we should replace ∂/∂xµ1...µk by 1 if k = 0 and ∂/∂xµk+1...µr by 1 if k = r .
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Proof. According to the definition of the ∗n-product, we have

(f ∗n (g ∗n h))(x) = exp

(
n∑

r=1

xµ1...µr

r∑
k=0

∂

∂x
µ1...µk

1

∂

∂x
µk+1...µr

2

)

× exp

(
n∑

s=1

x
ν1...νs

2

s∑
l=0

∂

∂x
ν1...νl

3

∂

∂x
νl+1...νs

4

)
f (x1)g(x3)h(x4)

∣∣∣∣∣
x1=x2=0
x3=x4=0

.

This depends on x2 only through the second exponential. On functions which are not dependent
on x2, we find

exp

(
n∑

r=1

xµ1...µr

r∑
k=0

∂

∂x
µ1...µk

1

∂

∂x
µk+1...µr

2

)
exp

(
n∑

s=1

x
ν1...νs

2

s∑
l=0

∂

∂x
ν1...νl

3

∂

∂x
νl+1...νs

4

)

= exp

(
n∑

r=1

xµ1...µr

r∑
k=0

∂

∂x
µ1...µk

1

r∑
l=k

∂

∂x
µk+1...µl

3

∂

∂x
µl+1...µr

4

)

× exp

(
n∑

s=1

x
ν1...νs

2

s∑
l=0

∂

∂x
ν1...νl

3

∂

∂x
νl+1...νs

4

)

= exp

(
n∑

s=1

x
ν1...νs

2

s∑
l=0

∂

∂x
ν1...νl

3

∂

∂x
νl+1...νs

4

)
exp

(
n∑

r=1

xµ1...µr S1,3,4
µ1...µr

)

where

S1,3,4
µ1...µr

:= ∂

∂x
µ1...µr

1

+
∂

∂x
µ1...µr

3

+
∂

∂x
µ1...µr

4

+
∑

0<k<l<r

∂

∂x
µ1...µk

1

∂

∂x
µk+1...µl

3

∂

∂x
µl+1...µr

4

+
∑

0<k<r

∂

∂x
µ1...µk

1

∂

∂x
µk+1...µr

3

+
∑

0<k<r

∂

∂x
µ1...µk

1

∂

∂x
µk+1...µr

4

+
∑

0<k<r

∂

∂x
µ1...µk

3

∂

∂x
µk+1...µr

4

is completely symmetric in the labels 1,3,4. As a consequence, we obtain

(f ∗n (g ∗n h))(x) = exp

(
n∑

r=1

xµ1...µr S1,3,4
µ1...µr

)
f (x1)g(x3)h(x4)

∣∣∣∣∣
x1=x3=x4=0

and a similar calculation yields the same expression for ((f ∗n g) ∗n h)(x). �

Partial differentiation with respect to xµ1...µr acts on a ∗n-product as follows:

∂

∂xµ1...µr
(f ∗n g) =

r∑
k=0

∂f

∂xµ1...µk
∗n

∂g

∂xµk+1...µr
r � n. (C.2)

Suppose we impose an additional condition of the form

aµ1...µr
xµ1...µr = 0 (C.3)

with constants aµ1...µr
on the deformation parameters. The multiplication rule (C.2) then leads

to the further compatibility conditions

0 = xν ∗n

(
aµ1...µr

xµ1...µr
) = aµ1...µr

xν ∗n xµ1...µr

= xν
(
aµ1...µr

xµ1...µr
)

+ aµ1...µr
xνµ1...µr = aµ1...µr

xνµ1...µr . (C.4)

More generally, for all p, q = 0, 1, 2 . . . we find

aµ1...µr
xν1...νpµ1...µrρ1...ρq = 0. (C.5)
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Appendix D. Left A(P )-modules and Baker–Akhiezer functions

Let M be a left A-module, so that α ≺ m and α • m are defined for all α ∈ A and m ∈ M with
the following associativity relations,

(α ≺ β) ≺ m = α ≺ (β ≺ m) (α • β) • m = α • (β • m) (D.1)
(α ≺ β) • m = α ≺ (β • m) (α • β) ≺ m = α • (β ≺ m). (D.2)

We further assume that M is graded, i.e., M = ⊕
r�0 Mr with Ar ≺ Ms ⊆ Mr+s and

Ar•Ms ⊆ Mr+s−1, and that M is completely determined by M0 and ≺, so that Mr ⊆ Ar ≺ M0.
This reduces the left actions on M to the definitions of A ≺ χ and A • χ for A ∈ A1 and
χ ∈ M0. Let α 
 m := α • m + α ≺ m. Furthermore, for χ ∈ M0, we set

α ◦ χ := α 
 χ (D.3)

(which does not hold for general m ∈ M). The product ◦ then extends via the quasi-shuffle
properties

(A 
 α) ◦ (B 
 m) = A 
 [α ◦ (B 
 m)] + B 
 [(A 
 α) ◦ m] − A • B 
 α ◦ m (D.4)
(A ≺ α) ◦ (B ≺ m) = A ≺ [α ◦ (B ≺ m)] + B ≺ [(A ≺ α) ◦ m] + A • B ≺ α ◦ m (D.5)
(A 
 α) ◦ (B ≺ m) = A 
 [α ◦ (B ≺ m)] + B ≺ [(A 
 α) ◦ m] (D.6)

which are consistent with (D.3). By induction, one obtains

α ◦ (β ◦ m) = (α ◦ β) ◦ m (D.7)

for α, β ∈ A and m ∈ M . In fact, the proof is rather tedious and requires several generalizations
of results obtained for the algebra A.

In the following, we concentrate on a graded left A(P )-module M. Let MR be the left
module of R containing the Baker–Akhiezer function of the ncKP hierarchy. We define a map
�̃ : M → MR by

�̃(α ≺ χ) := −�(α)<0 ∗ �̃(χ) �̃(α 
 χ) := �(α)�0 ∗ �̃(χ) (D.8)

for all α ∈ A and χ ∈ M0. This leads to

�̃(α • χ) = �(α) ∗ �̃(χ). (D.9)

Furthermore, we define linear operators δm1...mr
on MR by setting

δm1...mr
�̃(m) := �̃

(
Pm1...mr

◦ m
)

(D.10)

and requiring the generalized derivation rule

δm1...mr
(X ∗ �̃(χ)) =

r∑
k=0

(
δm1...mk

X
) ∗ δmk+1...mr

�̃(χ) (D.11)

for all χ ∈ R. Using (D.3) and (D.8), we obtain

δm1...mr
�̃(χ) = �̃

(
Pm1...mr

◦ χ
) = �̃

(
Pm1...mr


 χ
) = �

(
Pm1...mr

)
�0 ∗ �̃(χ)

= Lm1,...mr �0 ∗ �̃(χ). (D.12)

Let us call χ ∈ M0 a Baker–Akhiezer element if it satisfies

P • χ = λχ (D.13)

with λ ∈ K. Acting with �̃ on this equation leads to

L ∗ �̃(χ) = λ�̃(χ). (D.14)

Together with (D.12), this is equivalent to the linear system (8.9).
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Čech cohomology classes J. Geom. Phys. 29 347–92
[45] Takasaki K 1994 Nonabelian KP hierarchy with Moyal algebraic coefficients J. Geom. Phys. 14 332–64
[46] Sakakibara M 2004 Factorization methods for noncommutative KP and Toda hierarchy J. Phys. A: Math. Gen.

37 L599–604
[47] Haak G, Schmidt M and Schrader R 1992 Group theoretic formulation of the Segal–Wilson approach to

integrable systems with applications Rev. Math. Phys. 4 451–99
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